語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Study of Log-concave Mixture Models.
~
Hu, Hao.
FindBook
Google Book
Amazon
博客來
A Study of Log-concave Mixture Models.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A Study of Log-concave Mixture Models./
作者:
Hu, Hao.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
122 p.
附註:
Source: Dissertation Abstracts International, Volume: 78-08(E), Section: B.
Contained By:
Dissertation Abstracts International78-08B(E).
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10583428
ISBN:
9781369621075
A Study of Log-concave Mixture Models.
Hu, Hao.
A Study of Log-concave Mixture Models.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 122 p.
Source: Dissertation Abstracts International, Volume: 78-08(E), Section: B.
Thesis (Ph.D.)--North Carolina State University, 2016.
Mixture models are widely used when data are from a number of different components. Traditional parametric mixture models can be estimated via the expectationmaximization algorithm (known as the EM-algorithm) based on their parametric assumptions. However, these assumptions are sometimes too restrictive and the estimation results are biased if the models are misspecified. To relax the parametric assumption, we apply a log-concave shape constraint. This dissertation analyzes the log-concave mixture models, which are more exible and general than the traditional parametric mixture models. We developed a nonparametric log-concave maximum likelihood estimator (LCMLE) for the log-concave mixture model. In particular, we investigate the theoretical properties, computational algorithms and applications in clustering. We also develop the computational algorithms for the logconcave mixtures of regression model and its extension.
ISBN: 9781369621075Subjects--Topical Terms:
517247
Statistics.
A Study of Log-concave Mixture Models.
LDR
:01787nmm a2200277 4500
001
2128507
005
20180104132948.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781369621075
035
$a
(MiAaPQ)AAI10583428
035
$a
AAI10583428
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Hu, Hao.
$3
1620319
245
1 2
$a
A Study of Log-concave Mixture Models.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
122 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-08(E), Section: B.
500
$a
Adviser: Yichao Wu.
502
$a
Thesis (Ph.D.)--North Carolina State University, 2016.
520
$a
Mixture models are widely used when data are from a number of different components. Traditional parametric mixture models can be estimated via the expectationmaximization algorithm (known as the EM-algorithm) based on their parametric assumptions. However, these assumptions are sometimes too restrictive and the estimation results are biased if the models are misspecified. To relax the parametric assumption, we apply a log-concave shape constraint. This dissertation analyzes the log-concave mixture models, which are more exible and general than the traditional parametric mixture models. We developed a nonparametric log-concave maximum likelihood estimator (LCMLE) for the log-concave mixture model. In particular, we investigate the theoretical properties, computational algorithms and applications in clustering. We also develop the computational algorithms for the logconcave mixtures of regression model and its extension.
590
$a
School code: 0155.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2
$a
North Carolina State University.
$3
1018772
773
0
$t
Dissertation Abstracts International
$g
78-08B(E).
790
$a
0155
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10583428
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9339110
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入