語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optical Metrology for CIGS Solar Cel...
~
Sunkoju, Sravan Kumar.
FindBook
Google Book
Amazon
博客來
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications./
作者:
Sunkoju, Sravan Kumar.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
162 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-09(E), Section: B.
Contained By:
Dissertation Abstracts International77-09B(E).
標題:
Nanoscience. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10107455
ISBN:
9781339708560
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications.
Sunkoju, Sravan Kumar.
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 162 p.
Source: Dissertation Abstracts International, Volume: 77-09(E), Section: B.
Thesis (Ph.D.)--State University of New York at Albany, 2016.
Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent conducting oxide (TCO) bi-layer, thus derived were used in a fiber optic-based spectroscopic reflectometry optical monitoring system installed in the pilot line at the PVMC's Halfmoon facility. Results obtained from this study show that the use of regular fiber optics, instead of polarization-maintaining fiber optics, is sufficient for the purpose of process monitoring. Also, the technique does not need to be used "in-situ", but the measurements can be taken in-line, and are applicable to a variety of deposition techniques used for different functional layers deposited on rigid or flexible substrates.
ISBN: 9781339708560Subjects--Topical Terms:
587832
Nanoscience.
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications.
LDR
:05431nmm a2200325 4500
001
2125699
005
20171115071134.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781339708560
035
$a
(MiAaPQ)AAI10107455
035
$a
AAI10107455
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Sunkoju, Sravan Kumar.
$3
3287780
245
1 0
$a
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
162 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-09(E), Section: B.
500
$a
Adviser: Pradeep Haldar.
502
$a
Thesis (Ph.D.)--State University of New York at Albany, 2016.
520
$a
Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent conducting oxide (TCO) bi-layer, thus derived were used in a fiber optic-based spectroscopic reflectometry optical monitoring system installed in the pilot line at the PVMC's Halfmoon facility. Results obtained from this study show that the use of regular fiber optics, instead of polarization-maintaining fiber optics, is sufficient for the purpose of process monitoring. Also, the technique does not need to be used "in-situ", but the measurements can be taken in-line, and are applicable to a variety of deposition techniques used for different functional layers deposited on rigid or flexible substrates.
520
$a
In addition, effect of Cu concentration on the CIGS optical properties has been studied. Mixed CIGS/Cu2-xSe phase was observed at the surface at the end of the second stage of 3-stage deposition process, under Cu-rich conditions. A significant change in optical behavior of CIGS due to Cu2-xSe at the surface was observed under Cu-rich conditions, which can be used as end-point detection method to move from 2nd stage to 3rd stage in the deposition process. Developed optical functions were applied to in-line reflectance measurements not only to identify the Cu2-xSe phase at the surface but also to measure the thickness of the mixed CIGS/Cu2-xSe layer. This spectroscopic reflectometry based in-line process control technique can be used for end-point detection as well as to control thickness during the preparation of large area CIGS films.
520
$a
These results can assist in the development of optical process-control tools for the manufacturing of high quality CIGS based photovoltaic cells, increasing the uptime and yield of the production line.
520
$a
Finally, to understand the cost implications, low cost potential of two different deposition technologies has been studied on both rigid and flexible substrates with the help of cost analysis. Cost advantages of employing a contactless optics based process control technique have been investigated in order to achieve a low cost of < 0.5 $/W for CIGS module production. Based on cost analysis, one of the best strategies for achieving the low cost targets would be increasing manufacturing throughput, using roll-to-roll thin-film module manufacturing, with co-evaporation and chemical bath deposition processes for absorber and buffer layer respectively, while applying a low-cost process control technique such as spectroscopic reflectometry to improve module efficiencies and maintain high yield.
590
$a
School code: 0668.
650
4
$a
Nanoscience.
$3
587832
650
4
$a
Economics.
$3
517137
690
$a
0565
690
$a
0501
710
2
$a
State University of New York at Albany.
$b
Nanoscale Science and Engineering-Nanoscale Science.
$3
1685320
773
0
$t
Dissertation Abstracts International
$g
77-09B(E).
790
$a
0668
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10107455
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9336311
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入