語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mechanistic studies of the microtubu...
~
Hernandez-Lopez, Rogelio Antonio.
FindBook
Google Book
Amazon
博客來
Mechanistic studies of the microtubule-based motors dynein and kinesin-8.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mechanistic studies of the microtubule-based motors dynein and kinesin-8./
作者:
Hernandez-Lopez, Rogelio Antonio.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2015,
面頁冊數:
185 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-04(E), Section: B.
Contained By:
Dissertation Abstracts International77-04B(E).
標題:
Biophysics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3738810
ISBN:
9781339293110
Mechanistic studies of the microtubule-based motors dynein and kinesin-8.
Hernandez-Lopez, Rogelio Antonio.
Mechanistic studies of the microtubule-based motors dynein and kinesin-8.
- Ann Arbor : ProQuest Dissertations & Theses, 2015 - 185 p.
Source: Dissertation Abstracts International, Volume: 77-04(E), Section: B.
Thesis (Ph.D.)--Harvard University, 2015.
This item is not available from ProQuest Dissertations & Theses.
The precise delivery and organization of intracellular factors in space and time relies on a set of molecules that move along and regulate the dynamics of cytoskeletal filaments. The two families of microtubule-based motors-- dyneins and kinesins-- power vital biological processes such as intracellular transport, chromosome segregation and more broadly cell-cell communication and cell polarization. Despite their role in such diverse activities, their molecular mechanisms remain poorly understood. Combining biochemistry, cryo-electron microscopy, molecular dynamics simulations and single molecule biophysics, we provide novel insights into the mechanistic basis of how dynein and kinesin-8 interact with microtubules (MTs) to regulate their function. Cytoplasmic dynein is a homodimer that moves for long distances along MTs without dissociating, a property known as processivity. Its movement requires coupling cycles of ATP binding and hydrolysis to changes in affinity for its track. Intriguingly, the main site of ATP hydrolysis in the motor is separated from the microtubule binding domain (MTBD) by 25 nm. How do these sites communicate with each other? What are the changes responsible for modulating the affinity between the motor and its track during dynein's mechanochemical cycle? Furthermore, it has been shown that dynein's stepping behavior is highly variable. Dynein walks by taking a broad distribution of step sizes; some of its steps are sideways and some are backwards. Is dynein's stepping behavior dictated by the motor's ATPase activity or dynein's affinity for MTs? To address these important questions, first, we solved a cryo-EM reconstruction of dynein's MTBD bound to the MT. We found that upon MT binding, dynein's MTBD undergoes a large conformational change underlying changes in its affinity for MTs. Our structural model suggested specific negatively charged residues within the MTBD that tune dynein's affinity for MTs. We mutated these residues to alanine and show a dramatic increase in dynein's MT binding affinity resulting in enhanced (~5-6 fold) motor processivity. These mutants provide us with a tool to explore the role of MT-binding affinity in dynein's stepping behavior. We characterized, using single molecule experiments, the stepping pattern of the high MT binding affinity dyneins. We found that an increased MT-binding affinity reduces dynein's stepping rate and impairs the coupling between ATPase activity and stepping. Together, our results provide a model for how dynein has evolved a finely tuned mechanism that allows its MTBD to communicate MT-binding to its motor domain. This mechanism also regulates dyneins's affinity for the MT and motor's processivity. We then sought to understand the unique functional properties of kinesin-8. Unlike other kinesins that have the ability to either move along microtubules or regulate the dynamics of MT-ends, kinesin-8s can do both. Kip3, the budding yeast kinesin-8, is a highly processive motor capable of dwelling at the MT plus-end and it is a MT depolymerase. Given the highly conserved sequence and structure of kinesin's motor domain, how is that Kip3 can perform these two distinct functions? Does Kip3 interact with the MT-lattice in the same manner than that at the MT-end? We characterized, structurally, how Kip3 binds to microtubules that mimic the MT-lattice and the MT-end. We have identified and tested specific residues within Kip3 that are responsible for Kip3's processivity, MT-end dwelling and depolymerization activity.
ISBN: 9781339293110Subjects--Topical Terms:
518360
Biophysics.
Mechanistic studies of the microtubule-based motors dynein and kinesin-8.
LDR
:04573nmm a2200313 4500
001
2124108
005
20171023101709.5
008
180830s2015 ||||||||||||||||| ||eng d
020
$a
9781339293110
035
$a
(MiAaPQ)AAI3738810
035
$a
AAI3738810
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Hernandez-Lopez, Rogelio Antonio.
$3
3286086
245
1 0
$a
Mechanistic studies of the microtubule-based motors dynein and kinesin-8.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2015
300
$a
185 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-04(E), Section: B.
500
$a
Advisers: Andres E. Leschziner; Xioawei Zhuang.
502
$a
Thesis (Ph.D.)--Harvard University, 2015.
506
$a
This item is not available from ProQuest Dissertations & Theses.
520
$a
The precise delivery and organization of intracellular factors in space and time relies on a set of molecules that move along and regulate the dynamics of cytoskeletal filaments. The two families of microtubule-based motors-- dyneins and kinesins-- power vital biological processes such as intracellular transport, chromosome segregation and more broadly cell-cell communication and cell polarization. Despite their role in such diverse activities, their molecular mechanisms remain poorly understood. Combining biochemistry, cryo-electron microscopy, molecular dynamics simulations and single molecule biophysics, we provide novel insights into the mechanistic basis of how dynein and kinesin-8 interact with microtubules (MTs) to regulate their function. Cytoplasmic dynein is a homodimer that moves for long distances along MTs without dissociating, a property known as processivity. Its movement requires coupling cycles of ATP binding and hydrolysis to changes in affinity for its track. Intriguingly, the main site of ATP hydrolysis in the motor is separated from the microtubule binding domain (MTBD) by 25 nm. How do these sites communicate with each other? What are the changes responsible for modulating the affinity between the motor and its track during dynein's mechanochemical cycle? Furthermore, it has been shown that dynein's stepping behavior is highly variable. Dynein walks by taking a broad distribution of step sizes; some of its steps are sideways and some are backwards. Is dynein's stepping behavior dictated by the motor's ATPase activity or dynein's affinity for MTs? To address these important questions, first, we solved a cryo-EM reconstruction of dynein's MTBD bound to the MT. We found that upon MT binding, dynein's MTBD undergoes a large conformational change underlying changes in its affinity for MTs. Our structural model suggested specific negatively charged residues within the MTBD that tune dynein's affinity for MTs. We mutated these residues to alanine and show a dramatic increase in dynein's MT binding affinity resulting in enhanced (~5-6 fold) motor processivity. These mutants provide us with a tool to explore the role of MT-binding affinity in dynein's stepping behavior. We characterized, using single molecule experiments, the stepping pattern of the high MT binding affinity dyneins. We found that an increased MT-binding affinity reduces dynein's stepping rate and impairs the coupling between ATPase activity and stepping. Together, our results provide a model for how dynein has evolved a finely tuned mechanism that allows its MTBD to communicate MT-binding to its motor domain. This mechanism also regulates dyneins's affinity for the MT and motor's processivity. We then sought to understand the unique functional properties of kinesin-8. Unlike other kinesins that have the ability to either move along microtubules or regulate the dynamics of MT-ends, kinesin-8s can do both. Kip3, the budding yeast kinesin-8, is a highly processive motor capable of dwelling at the MT plus-end and it is a MT depolymerase. Given the highly conserved sequence and structure of kinesin's motor domain, how is that Kip3 can perform these two distinct functions? Does Kip3 interact with the MT-lattice in the same manner than that at the MT-end? We characterized, structurally, how Kip3 binds to microtubules that mimic the MT-lattice and the MT-end. We have identified and tested specific residues within Kip3 that are responsible for Kip3's processivity, MT-end dwelling and depolymerization activity.
590
$a
School code: 0084.
650
4
$a
Biophysics.
$3
518360
650
4
$a
Molecular biology.
$3
517296
650
4
$a
Biochemistry.
$3
518028
690
$a
0786
690
$a
0307
690
$a
0487
710
2
$a
Harvard University.
$b
Chemical Physics.
$3
3193186
773
0
$t
Dissertation Abstracts International
$g
77-04B(E).
790
$a
0084
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3738810
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9334720
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入