語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonrelativistic Naturalness in Arist...
~
Yan, Ziqi.
FindBook
Google Book
Amazon
博客來
Nonrelativistic Naturalness in Aristotelian Quantum Field Theories.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonrelativistic Naturalness in Aristotelian Quantum Field Theories./
作者:
Yan, Ziqi.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
197 p.
附註:
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Contained By:
Dissertation Abstracts International78-11B(E).
標題:
Theoretical physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10267322
ISBN:
9781369879537
Nonrelativistic Naturalness in Aristotelian Quantum Field Theories.
Yan, Ziqi.
Nonrelativistic Naturalness in Aristotelian Quantum Field Theories.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 197 p.
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 2017.
Some of the most fundamental questions in theoretical physics can be formulated as puzzles of naturalness, such as the cosmological constant problem and the Higgs mass hierarchy problem. In condensed matter physics, the interpretation of the linear scaling of resistivity with temperature in the strange metal phase of high-temperature superconductors also arises as a naturalness puzzle. In this thesis, we explore the landscape of naturalness in nonrelativistic quantum field theories that exhibit anisotropic scaling in space and time. Such theories are referred to as the "Aristotelian quantum field theories." In the simple case with scalars, we find that the constant shift symmetry is extended to a shift by a polynomial in spatial coordinates, which protects the technical naturalness of modes with a higher order dispersion. This discovery leads to a generalization of the relativistic Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem to multicritical cases in lower critical dimension. By breaking the polynomial shift symmetries in a hierarchy, we find novel cascading phenomena with large natural hierarchies between the scales at which the values of z change, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem. Based on these formal developments, we propose potential applications both to the Higgs mass hierarchy problem and to the problem of linear resistivity in strange metals. Finally, encouraged by these nonrelativistic surprises that already arise in simple systems with scalars, we move on to more complicated systems with gauge symmetries. We study the quantization of Horava gravity in 2+1 dimensions and compute the anomalous dimension of the cosmological constant at one loop. However, nonrelativistic naturalness in gravity is still largely unexplored. Whether or not such nonrelativsitic twists have any implications for important naturalness puzzles, such as the cosmological constant problem, remains as an intriguing question.
ISBN: 9781369879537Subjects--Topical Terms:
2144760
Theoretical physics.
Nonrelativistic Naturalness in Aristotelian Quantum Field Theories.
LDR
:02919nmm a2200301 4500
001
2122674
005
20170922124936.5
008
180830s2017 ||||||||||||||||| ||eng d
020
$a
9781369879537
035
$a
(MiAaPQ)AAI10267322
035
$a
AAI10267322
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Yan, Ziqi.
$3
3284640
245
1 0
$a
Nonrelativistic Naturalness in Aristotelian Quantum Field Theories.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
197 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
500
$a
Adviser: Petr Horava.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 2017.
520
$a
Some of the most fundamental questions in theoretical physics can be formulated as puzzles of naturalness, such as the cosmological constant problem and the Higgs mass hierarchy problem. In condensed matter physics, the interpretation of the linear scaling of resistivity with temperature in the strange metal phase of high-temperature superconductors also arises as a naturalness puzzle. In this thesis, we explore the landscape of naturalness in nonrelativistic quantum field theories that exhibit anisotropic scaling in space and time. Such theories are referred to as the "Aristotelian quantum field theories." In the simple case with scalars, we find that the constant shift symmetry is extended to a shift by a polynomial in spatial coordinates, which protects the technical naturalness of modes with a higher order dispersion. This discovery leads to a generalization of the relativistic Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem to multicritical cases in lower critical dimension. By breaking the polynomial shift symmetries in a hierarchy, we find novel cascading phenomena with large natural hierarchies between the scales at which the values of z change, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem. Based on these formal developments, we propose potential applications both to the Higgs mass hierarchy problem and to the problem of linear resistivity in strange metals. Finally, encouraged by these nonrelativistic surprises that already arise in simple systems with scalars, we move on to more complicated systems with gauge symmetries. We study the quantization of Horava gravity in 2+1 dimensions and compute the anomalous dimension of the cosmological constant at one loop. However, nonrelativistic naturalness in gravity is still largely unexplored. Whether or not such nonrelativsitic twists have any implications for important naturalness puzzles, such as the cosmological constant problem, remains as an intriguing question.
590
$a
School code: 0028.
650
4
$a
Theoretical physics.
$3
2144760
650
4
$a
High energy physics.
$3
2144759
650
4
$a
Condensed matter physics.
$3
3173567
690
$a
0753
690
$a
0798
690
$a
0611
710
2
$a
University of California, Berkeley.
$b
Physics.
$3
1671059
773
0
$t
Dissertation Abstracts International
$g
78-11B(E).
790
$a
0028
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10267322
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9333288
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入