Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Crystallite Size Dependency of the P...
~
Rodenbough, Philip P.
Linked to FindBook
Google Book
Amazon
博客來
Crystallite Size Dependency of the Pressure and Temperature Response in Nanoparticles of Ceria and Other Oxides.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Crystallite Size Dependency of the Pressure and Temperature Response in Nanoparticles of Ceria and Other Oxides./
Author:
Rodenbough, Philip P.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
Description:
126 p.
Notes:
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
Contained By:
Dissertation Abstracts International77-12B(E).
Subject:
Physical chemistry. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10132028
ISBN:
9781339898599
Crystallite Size Dependency of the Pressure and Temperature Response in Nanoparticles of Ceria and Other Oxides.
Rodenbough, Philip P.
Crystallite Size Dependency of the Pressure and Temperature Response in Nanoparticles of Ceria and Other Oxides.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 126 p.
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
Thesis (Ph.D.)--Columbia University, 2016.
The short title of this dissertation is Size Matters . And it really does. Before diving into the original findings of this dissertation, this abstract starts by contextualizing their significance. To that end, recall that some of the earliest concepts learned by sophomore organic chemistry students include explaining physical properties based on carbon chain length, for example, and polymer length has enormous influence on macroscopic material properties. In the 1980s it was found that the electronic properties of small inorganic semiconductor crystallites can be rigorously tied to the physical size of the crystallites, and this understanding has led directly to the successful integration of so-called quantum dots into readily available technologies today, including flat screen televisions, as well as emerging technologies, such as quantum dot solar cells. Oxides, for their part, are important components of many technologies, from paints and cosmetics to microelectronics and catalytic converters. The crystallite size dependency of fundamental mechanical properties of oxides is the topic of this dissertation.
ISBN: 9781339898599Subjects--Topical Terms:
1981412
Physical chemistry.
Crystallite Size Dependency of the Pressure and Temperature Response in Nanoparticles of Ceria and Other Oxides.
LDR
:05047nmm a2200349 4500
001
2120482
005
20170719065344.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781339898599
035
$a
(MiAaPQ)AAI10132028
035
$a
AAI10132028
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Rodenbough, Philip P.
$3
3282419
245
1 0
$a
Crystallite Size Dependency of the Pressure and Temperature Response in Nanoparticles of Ceria and Other Oxides.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
126 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
500
$a
Adviser: Siu-Wai Chan.
502
$a
Thesis (Ph.D.)--Columbia University, 2016.
520
$a
The short title of this dissertation is Size Matters . And it really does. Before diving into the original findings of this dissertation, this abstract starts by contextualizing their significance. To that end, recall that some of the earliest concepts learned by sophomore organic chemistry students include explaining physical properties based on carbon chain length, for example, and polymer length has enormous influence on macroscopic material properties. In the 1980s it was found that the electronic properties of small inorganic semiconductor crystallites can be rigorously tied to the physical size of the crystallites, and this understanding has led directly to the successful integration of so-called quantum dots into readily available technologies today, including flat screen televisions, as well as emerging technologies, such as quantum dot solar cells. Oxides, for their part, are important components of many technologies, from paints and cosmetics to microelectronics and catalytic converters. The crystallite size dependency of fundamental mechanical properties of oxides is the topic of this dissertation.
520
$a
First, this dissertation reports that consistent preparation methods were used to produce batches of specific crystallite sizes for a diverse family of five cubic oxides: CeO2 (ceria), MgO (magnesia), Cu2O (cuprite), Fe3O4 (magnetite), and Co3O 4. The size-based lattice changes for small crystallites was carefully measured with X-ray diffraction. Expanded lattice parameters were found in small crystallites of all five oxides (notably for the first time in Fe 3O4). This behavior is rationalized with an atomic model reliant on differing coordination levels of atoms at the surface, and fundamental calculations of physical properties including surface stress and expansion energy are derived from the measured lattice expansion for these oxides.
520
$a
Then, the size dependency of the pressure response in ceria nanoparticles was measured using diamond anvil cells and synchrotron radiation. In a study unmatched in its comprehensiveness, it was found that the bulk modulus of ceria peaked at an intermediate crystallite size of 33 nm. This is rationalized with a core-shell model with a size dependent shell compressibility whose influence naturally grows as crystallite size shrinks. Complimentary thermal expansion measurements were carried out to probe the structural response of crystallites to heat. Overall, the thermal expansion of ceria decreased with crystallite size. Through careful heating cycles, it was possible to separate out quantitatively the two primary factors contributing to negative surface stress in ceria: ambient surface adsorbents and surface non-stoichiometry. These may be the first instances of such a calculation that provides this insight into the surface stress of oxide nanoparticles.
520
$a
Next, pressure and temperature studies parallel to those in ceria were carried out on magnesia as well. Magnesia is an important oxide to compare to ceria because it does not share ceria's tendency to form oxygen vacancy defects with cation charge variances. Nonetheless, magneisa was shown to possess a peak (albeit a less dramatic peak) in bulk modulus at an intermediate crystallite size, about 14 nm. Magnesia, like ceria, also had decreased thermal expansion at smaller crystallite sizes.
520
$a
Finally, experiments on molecular oxygen exchange properties of a series of oxides were carried out using a thermocycling reactor system designed and built in-house, with the aim of developing materials to convert carbon dioxide to carbon monoxide. Experiments were carried out under 1200°C, much lower than the 1500°C typically required for ceria oxygen exchange. It is thought that crystallite morphology could play an important role in dictating the effectiveness of this catalytic process. The increased understanding of fundamental physical properties of oxide nanoparticles, as explored here, may lead to their more rational integration into such emerging technologies.
590
$a
School code: 0054.
650
4
$a
Physical chemistry.
$3
1981412
650
4
$a
Materials science.
$3
543314
650
4
$a
Nanotechnology.
$3
526235
690
$a
0494
690
$a
0794
690
$a
0652
710
2
$a
Columbia University.
$b
Chemistry.
$3
2102233
773
0
$t
Dissertation Abstracts International
$g
77-12B(E).
790
$a
0054
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10132028
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9331100
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login