語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Synthesis of multimetallic nanoparti...
~
Weiner, Rebecca Gayle.
FindBook
Google Book
Amazon
博客來
Synthesis of multimetallic nanoparticles by seeded methods.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Synthesis of multimetallic nanoparticles by seeded methods./
作者:
Weiner, Rebecca Gayle.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
208 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
Contained By:
Dissertation Abstracts International77-10B(E).
標題:
Chemistry. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10109285
ISBN:
9781339725826
Synthesis of multimetallic nanoparticles by seeded methods.
Weiner, Rebecca Gayle.
Synthesis of multimetallic nanoparticles by seeded methods.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 208 p.
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
Thesis (Ph.D.)--Indiana University, 2016.
This dissertation focuses on the synthesis of metal nanocrystals (NCs) by seeded methods, in which preformed seeds serve as platforms for growth. Metal NCs are of interest due to their tunable optical and catalytic properties, which arise from their composition and crystallite size and shape. Moreover, multimetallic NCs are potentially multifunctional due to the integration of the properties of each metal within one structure. However, such structures are difficult to synthesize with structural definition due to differences in precursor reduction rates and the size-dependent solubility of bimetallic phases. Seed-mediated co-reduction (SMCR) is a method developed in the Skrabalak Laboratory that couples the advantages of a seeded method with co-reduction methods to achieve multimetallic nanomaterials with defined shape and architecture. This approach was originally demonstrated in a model Au-Pd system in which Au and Pd precursors were simultaneously reduced to deposit metal onto shape-controlled Au or Pd NC seeds. Using SMCR, uniformly branched core shell Au Au-Pd and Pd Au-Pd NCs were synthesized, with the shape of the seeds directing the symmetry of the final structures. By varying the seed shape and the temperature at which metal deposition occurs, the roles of adatom diffusion and seed shape on final NC morphology were decoupled. Moreover, by selecting seeds of a composition (Ag) different than the depositing metals (Au and Pd), trimetallic nanostructures are possible, including shape-controlled Ag Au-Pd NCs and hollow Au-Pd-Ag nanoparticles (NPs). The latter architecture arises through galvanic replacement. Shape-controlled core shell NCs with trimetallic shells are also possible by co-reducing three metal precursors (Ag, Au, and Pd) with shape-controlled Au seeds; for example, convex octopods, concave cubes, and truncated octahedra were achieved in this initial demonstration and was enabled by varying the ratio of Ag to Au/Pd in the overgrowth step as well as reaction pH. Ultimately, the final multimetallic nanostructure depends on the kinetics of metal deposition as well as seed composition, shape, reactivity, and crystallinity. In elucidating the roles of these parameters in nanomaterial synthesis, the rational design of new functional NCs becomes possible, which capitalize on the unique optical and catalytic properties of structurally defined multimetallic structures. In fact, branched Au-Pd NCs with high symmetry were found to be effective refractive index-based hydrogen sensors.
ISBN: 9781339725826Subjects--Topical Terms:
516420
Chemistry.
Synthesis of multimetallic nanoparticles by seeded methods.
LDR
:03446nmm a2200301 4500
001
2120427
005
20170719065338.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781339725826
035
$a
(MiAaPQ)AAI10109285
035
$a
AAI10109285
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Weiner, Rebecca Gayle.
$3
3282360
245
1 0
$a
Synthesis of multimetallic nanoparticles by seeded methods.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
208 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
500
$a
Adviser: Sara E. Skrabalak.
502
$a
Thesis (Ph.D.)--Indiana University, 2016.
520
$a
This dissertation focuses on the synthesis of metal nanocrystals (NCs) by seeded methods, in which preformed seeds serve as platforms for growth. Metal NCs are of interest due to their tunable optical and catalytic properties, which arise from their composition and crystallite size and shape. Moreover, multimetallic NCs are potentially multifunctional due to the integration of the properties of each metal within one structure. However, such structures are difficult to synthesize with structural definition due to differences in precursor reduction rates and the size-dependent solubility of bimetallic phases. Seed-mediated co-reduction (SMCR) is a method developed in the Skrabalak Laboratory that couples the advantages of a seeded method with co-reduction methods to achieve multimetallic nanomaterials with defined shape and architecture. This approach was originally demonstrated in a model Au-Pd system in which Au and Pd precursors were simultaneously reduced to deposit metal onto shape-controlled Au or Pd NC seeds. Using SMCR, uniformly branched core shell Au Au-Pd and Pd Au-Pd NCs were synthesized, with the shape of the seeds directing the symmetry of the final structures. By varying the seed shape and the temperature at which metal deposition occurs, the roles of adatom diffusion and seed shape on final NC morphology were decoupled. Moreover, by selecting seeds of a composition (Ag) different than the depositing metals (Au and Pd), trimetallic nanostructures are possible, including shape-controlled Ag Au-Pd NCs and hollow Au-Pd-Ag nanoparticles (NPs). The latter architecture arises through galvanic replacement. Shape-controlled core shell NCs with trimetallic shells are also possible by co-reducing three metal precursors (Ag, Au, and Pd) with shape-controlled Au seeds; for example, convex octopods, concave cubes, and truncated octahedra were achieved in this initial demonstration and was enabled by varying the ratio of Ag to Au/Pd in the overgrowth step as well as reaction pH. Ultimately, the final multimetallic nanostructure depends on the kinetics of metal deposition as well as seed composition, shape, reactivity, and crystallinity. In elucidating the roles of these parameters in nanomaterial synthesis, the rational design of new functional NCs becomes possible, which capitalize on the unique optical and catalytic properties of structurally defined multimetallic structures. In fact, branched Au-Pd NCs with high symmetry were found to be effective refractive index-based hydrogen sensors.
590
$a
School code: 0093.
650
4
$a
Chemistry.
$3
516420
650
4
$a
Nanoscience.
$3
587832
650
4
$a
Materials science.
$3
543314
690
$a
0485
690
$a
0565
690
$a
0794
710
2
$a
Indiana University.
$b
Chemistry.
$3
1020748
773
0
$t
Dissertation Abstracts International
$g
77-10B(E).
790
$a
0093
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10109285
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9331045
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入