語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Adsorption and adhesion energies of ...
~
James, Trevor E.
FindBook
Google Book
Amazon
博客來
Adsorption and adhesion energies of metal films and nanoparticles studied by adsorption calorimetry: Understanding catalytic systems.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Adsorption and adhesion energies of metal films and nanoparticles studied by adsorption calorimetry: Understanding catalytic systems./
作者:
James, Trevor E.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
152 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
Contained By:
Dissertation Abstracts International77-08B(E).
標題:
Chemistry. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10077333
ISBN:
9781339588193
Adsorption and adhesion energies of metal films and nanoparticles studied by adsorption calorimetry: Understanding catalytic systems.
James, Trevor E.
Adsorption and adhesion energies of metal films and nanoparticles studied by adsorption calorimetry: Understanding catalytic systems.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 152 p.
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
Thesis (Ph.D.)--University of Washington, 2016.
Metal nanoparticles dispersed across solid surfaces form the basis of many important technologies such as heterogeneous catalysts, electrocatalysts, chemical sensors, microelectronics, and fuel cells. Understanding energetics of chemical bonding between the metal and oxide in these systems is important for the development of more efficient devices. First, in Chapter 2, this dissertations discusses a new, ultrahigh vacuum single crystal adsorption calorimeter which is used to directly measure metal adsorption and adhesion energies to model catalytic surfaces from 77-350 K. Some of the key instrumental improvements over previous designs include the capability of real-time metal atom flux monitoring and a decreased thermal radiation contribution to the heat signal. Next, in chapter 3, an improved data analysis method to determine average particle size and number density from low energy ion scattering spectroscopy (LEIS) measurements of nanoparticles that grow with the shape of hemispherical caps is discussed and validated. A correction is applied for the case when nanoparticles cause substrate shadowing due to source ion incident and detection angles being non-normal to the surface. The model was demonstrated for Cu growth on slightly reduced CeO2(111) where it improved the fit ~3-fold.
ISBN: 9781339588193Subjects--Topical Terms:
516420
Chemistry.
Adsorption and adhesion energies of metal films and nanoparticles studied by adsorption calorimetry: Understanding catalytic systems.
LDR
:04272nmm a2200313 4500
001
2119164
005
20170619080556.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781339588193
035
$a
(MiAaPQ)AAI10077333
035
$a
AAI10077333
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
James, Trevor E.
$3
3281021
245
1 0
$a
Adsorption and adhesion energies of metal films and nanoparticles studied by adsorption calorimetry: Understanding catalytic systems.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
152 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
500
$a
Adviser: Charles T. Campbell.
502
$a
Thesis (Ph.D.)--University of Washington, 2016.
520
$a
Metal nanoparticles dispersed across solid surfaces form the basis of many important technologies such as heterogeneous catalysts, electrocatalysts, chemical sensors, microelectronics, and fuel cells. Understanding energetics of chemical bonding between the metal and oxide in these systems is important for the development of more efficient devices. First, in Chapter 2, this dissertations discusses a new, ultrahigh vacuum single crystal adsorption calorimeter which is used to directly measure metal adsorption and adhesion energies to model catalytic surfaces from 77-350 K. Some of the key instrumental improvements over previous designs include the capability of real-time metal atom flux monitoring and a decreased thermal radiation contribution to the heat signal. Next, in chapter 3, an improved data analysis method to determine average particle size and number density from low energy ion scattering spectroscopy (LEIS) measurements of nanoparticles that grow with the shape of hemispherical caps is discussed and validated. A correction is applied for the case when nanoparticles cause substrate shadowing due to source ion incident and detection angles being non-normal to the surface. The model was demonstrated for Cu growth on slightly reduced CeO2(111) where it improved the fit ~3-fold.
520
$a
In Chapters 4 and 5, the adsorption energy and growth morphology of vapor deposited copper atoms onto slightly reduced CeO2(111) was measured at 100 and 300 K. Copper was determined to grow as three-dimensional particles with preferential adsorption to stoichiometric ceria sites, opposite of what has been observed for other metals such as Ag, Au and Pt on ceria. An important result was the measurement of copper atom chemical potentials starting from single copper atoms up to large nanoparticles which provides unique insight into the increased reactivity of the small aggregates and their propensity to sinter. In Chapter 6, gold adsorption energies onto slightly reduced ceria was also measured. Like copper, gold grows as hemispherical caps on ceria, but with a smaller number density for a given temperature and extent of ceria reduction. Gold also adsorbs more strongly to reduced ceria sites than to stoichiometric sites. The adhesion energy between copper, silver, and gold nanoparticles and slightly reduced ceria was compared to previous adhesion energy trends discovered by our group. Adhesion energy of metals onto well-defined oxides adhere more strongly to ceria than MgO, and scales with the adsorbed metal's heat of sublimation minus the heat of formation of the its most stable oxide, providing a method to predict adhesion energies of metals to oxides. Lastly, in Chapter 7, the adsorption and adhesion energy of 2D copper overlayers on Pt(111) was measured by calorimetry. The adsorption energy of copper atoms in each layer was used to explain the thermodynamic driving force of copper to form the quasi-pseudomorphic layer-by-layer structure.
520
$a
These studies provide new insights into interfacial chemical bonding and provide important benchmarks to test new density functional theory calculations. The results will aid in the rational design of more efficient catalysts. Future aims and conclusions of this work are presented in Chapter 8.
590
$a
School code: 0250.
650
4
$a
Chemistry.
$3
516420
650
4
$a
Physical chemistry.
$3
1981412
690
$a
0485
690
$a
0494
710
2
$a
University of Washington.
$b
Chemistry.
$3
2093573
773
0
$t
Dissertation Abstracts International
$g
77-08B(E).
790
$a
0250
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10077333
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9329782
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入