語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Algorithms and generalizations of th...
~
Harris, David G.
FindBook
Google Book
Amazon
博客來
Algorithms and generalizations of the Lovasz Local Lemma.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Algorithms and generalizations of the Lovasz Local Lemma./
作者:
Harris, David G.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2015,
面頁冊數:
365 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-07(E), Section: B.
Contained By:
Dissertation Abstracts International77-07B(E).
標題:
Theoretical mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10011544
ISBN:
9781339473567
Algorithms and generalizations of the Lovasz Local Lemma.
Harris, David G.
Algorithms and generalizations of the Lovasz Local Lemma.
- Ann Arbor : ProQuest Dissertations & Theses, 2015 - 365 p.
Source: Dissertation Abstracts International, Volume: 77-07(E), Section: B.
Thesis (Ph.D.)--University of Maryland, College Park, 2015.
The Lovasz Local Lemma (LLL) is a cornerstone principle of the probabilistic method for combinatorics. This shows that one can avoid a large of set of "bad-events" (forbidden configurations of variables), provided the local conditions are satisfied. The original probabilistic formulation of this principle did not give efficient algorithms. A breakthrough result of Moser & Tardos led to an framework based on resampling variables which turns nearly all applications of the LLL into efficient algorithms. We extend and generalize the algorithm of Moser & Tardos in a variety of ways.
ISBN: 9781339473567Subjects--Topical Terms:
3173530
Theoretical mathematics.
Algorithms and generalizations of the Lovasz Local Lemma.
LDR
:03154nmm a2200361 4500
001
2117626
005
20170530090531.5
008
180830s2015 ||||||||||||||||| ||eng d
020
$a
9781339473567
035
$a
(MiAaPQ)AAI10011544
035
$a
AAI10011544
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Harris, David G.
$3
3279407
245
1 0
$a
Algorithms and generalizations of the Lovasz Local Lemma.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2015
300
$a
365 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-07(E), Section: B.
500
$a
Adviser: Aravind Srinivasan.
502
$a
Thesis (Ph.D.)--University of Maryland, College Park, 2015.
520
$a
The Lovasz Local Lemma (LLL) is a cornerstone principle of the probabilistic method for combinatorics. This shows that one can avoid a large of set of "bad-events" (forbidden configurations of variables), provided the local conditions are satisfied. The original probabilistic formulation of this principle did not give efficient algorithms. A breakthrough result of Moser & Tardos led to an framework based on resampling variables which turns nearly all applications of the LLL into efficient algorithms. We extend and generalize the algorithm of Moser & Tardos in a variety of ways.
520
$a
We show tighter bounds on the complexity of the Moser-Tardos algorithm, particularly its parallel form. We also give a new, faster parallel algorithm for the LLL.
520
$a
We show that in some cases, the Moser-Tardos algorithm can converge even though the LLL itself does not apply; we give a new criterion (comparable to the LLL) for determining when this occurs. This leads to improved bounds for k-SAT and hypergraph coloring among other applications.
520
$a
We describe an extension of the Moser-Tardos algorithm based on partial resampling, and use this to obtain better bounds for problems involving sums of independent random variables, such as column-sparse packing and packet-routing.
520
$a
We describe a variant of the partial resampling algorithm specialized to approximating column-sparse covering integer programs, a generalization of set-cover. We also give hardness reductions and integrality gaps, showing that our partial resampling based algorithm obtains nearly optimal approximation factors.
520
$a
We give a variant of the Moser-Tardos algorithm for random permutations, one of the few cases of the LLL not covered by the original algorithm of Moser & Tardos. We use this to develop the first constructive algorithms for Latin transversals and hypergraph packing, including parallel algorithms.
520
$a
We analyze the distribution of variables induced by the Moser-Tardos algorithm. We show it has a random-like structure, which can be used to accelerate the Moser-Tardos algorithm itself as well as to cover problems such as MAX k-SAT in which we only partially avoid bad-events.
590
$a
School code: 0117.
650
4
$a
Theoretical mathematics.
$3
3173530
650
4
$a
Computer science.
$3
523869
690
$a
0642
690
$a
0984
710
2
$a
University of Maryland, College Park.
$b
Applied Mathematics and Scientific Computation.
$3
1021743
773
0
$t
Dissertation Abstracts International
$g
77-07B(E).
790
$a
0117
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10011544
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9328244
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入