語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Properties of closed 3-braids and br...
~
Stoimenow, Alexander.
FindBook
Google Book
Amazon
博客來
Properties of closed 3-braids and braid representations of links
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Properties of closed 3-braids and braid representations of links/ by Alexander Stoimenow.
作者:
Stoimenow, Alexander.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
x, 110 p. :ill., digital ;24 cm.
內容註:
1. Introduction -- 2. Preliminaries, basic definitions and conventions -- 3. Xu's form and Seifert surfaces -- 4. Polynomial invariants -- 5. Positivity of 3-braid links -- 6. Studying alternating links by braid index -- 7. Applications of the representation theory -- Appendix. -- References -- Index.
Contained By:
Springer eBooks
標題:
Braid theory. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-68149-8
ISBN:
9783319681498
Properties of closed 3-braids and braid representations of links
Stoimenow, Alexander.
Properties of closed 3-braids and braid representations of links
[electronic resource] /by Alexander Stoimenow. - Cham :Springer International Publishing :2017. - x, 110 p. :ill., digital ;24 cm. - Springerbriefs in mathematics,2191-8198. - Springerbriefs in mathematics..
1. Introduction -- 2. Preliminaries, basic definitions and conventions -- 3. Xu's form and Seifert surfaces -- 4. Polynomial invariants -- 5. Positivity of 3-braid links -- 6. Studying alternating links by braid index -- 7. Applications of the representation theory -- Appendix. -- References -- Index.
This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu's normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are identified within closures of 3-braids which have a given Alexander or Jones polynomial. Further classifications of knots and links arising by the closure of 3-braids are given, and new results about 4-braids are part of the work. Written with knot theorists, topologists,and graduate students in mind, this book features the identification and analysis of effective techniques for diagrammatic examples with unexpected properties.
ISBN: 9783319681498
Standard No.: 10.1007/978-3-319-68149-8doiSubjects--Topical Terms:
672437
Braid theory.
LC Class. No.: QA612.23
Dewey Class. No.: 514.224
Properties of closed 3-braids and braid representations of links
LDR
:02072nmm a2200337 a 4500
001
2112548
003
DE-He213
005
20180522164433.0
006
m d
007
cr nn 008maaau
008
180719s2017 gw s 0 eng d
020
$a
9783319681498
$q
(electronic bk.)
020
$a
9783319681481
$q
(paper)
024
7
$a
10.1007/978-3-319-68149-8
$2
doi
035
$a
978-3-319-68149-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA612.23
072
7
$a
PBG
$2
bicssc
072
7
$a
MAT014000
$2
bisacsh
072
7
$a
MAT038000
$2
bisacsh
082
0 4
$a
514.224
$2
23
090
$a
QA612.23
$b
.S873 2017
100
1
$a
Stoimenow, Alexander.
$3
3270395
245
1 0
$a
Properties of closed 3-braids and braid representations of links
$h
[electronic resource] /
$c
by Alexander Stoimenow.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
x, 110 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springerbriefs in mathematics,
$x
2191-8198
505
0
$a
1. Introduction -- 2. Preliminaries, basic definitions and conventions -- 3. Xu's form and Seifert surfaces -- 4. Polynomial invariants -- 5. Positivity of 3-braid links -- 6. Studying alternating links by braid index -- 7. Applications of the representation theory -- Appendix. -- References -- Index.
520
$a
This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu's normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are identified within closures of 3-braids which have a given Alexander or Jones polynomial. Further classifications of knots and links arising by the closure of 3-braids are given, and new results about 4-braids are part of the work. Written with knot theorists, topologists,and graduate students in mind, this book features the identification and analysis of effective techniques for diagrammatic examples with unexpected properties.
650
0
$a
Braid theory.
$3
672437
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Topological Groups, Lie Groups.
$3
891005
650
2 4
$a
Topology.
$3
522026
650
2 4
$a
Group Theory and Generalizations.
$3
893889
650
2 4
$a
Several Complex Variables and Analytic Spaces.
$3
893953
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Springerbriefs in mathematics.
$3
3270340
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-68149-8
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9324821
電子資源
11.線上閱覽_V
電子書
EB QA612.23
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入