語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
New era for robust speech recognitio...
~
Watanabe, Shinji.
FindBook
Google Book
Amazon
博客來
New era for robust speech recognition = exploiting deep learning /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
New era for robust speech recognition/ edited by Shinji Watanabe ... [et al.].
其他題名:
exploiting deep learning /
其他作者:
Watanabe, Shinji.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xvii, 436 p. :ill., digital ;24 cm.
內容註:
Speech and Language Processing -- Automatic Speech Recognition (ASR) -- Recent Applications -- Signal-Processing-Based Front-End for Robust ASR -- Generative Model-Based Speech Enhancement -- Denoising Autoencoder -- Discriminative Microphone Array Enhancement -- Learning Robust Feature Representation -- Training Data Augmentation -- Adaptation and Augmented Features -- Novel Model Topologies -- Novel Objective Criteria -- Benchmark Data, Tools, and Systems.
Contained By:
Springer eBooks
標題:
Automatic speech recognition. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-64680-0
ISBN:
9783319646800
New era for robust speech recognition = exploiting deep learning /
New era for robust speech recognition
exploiting deep learning /[electronic resource] :edited by Shinji Watanabe ... [et al.]. - Cham :Springer International Publishing :2017. - xvii, 436 p. :ill., digital ;24 cm.
Speech and Language Processing -- Automatic Speech Recognition (ASR) -- Recent Applications -- Signal-Processing-Based Front-End for Robust ASR -- Generative Model-Based Speech Enhancement -- Denoising Autoencoder -- Discriminative Microphone Array Enhancement -- Learning Robust Feature Representation -- Training Data Augmentation -- Adaptation and Augmented Features -- Novel Model Topologies -- Novel Objective Criteria -- Benchmark Data, Tools, and Systems.
This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research.
ISBN: 9783319646800
Standard No.: 10.1007/978-3-319-64680-0doiSubjects--Topical Terms:
753709
Automatic speech recognition.
LC Class. No.: TK7895.S65
Dewey Class. No.: 006.454
New era for robust speech recognition = exploiting deep learning /
LDR
:02356nmm a2200325 a 4500
001
2110730
003
DE-He213
005
20180420151358.0
006
m d
007
cr nn 008maaau
008
180619s2017 gw s 0 eng d
020
$a
9783319646800
$q
(electronic bk.)
020
$a
9783319646794
$q
(paper)
024
7
$a
10.1007/978-3-319-64680-0
$2
doi
035
$a
978-3-319-64680-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7895.S65
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.454
$2
23
090
$a
TK7895.S65
$b
N532 2017
245
0 0
$a
New era for robust speech recognition
$h
[electronic resource] :
$b
exploiting deep learning /
$c
edited by Shinji Watanabe ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xvii, 436 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Speech and Language Processing -- Automatic Speech Recognition (ASR) -- Recent Applications -- Signal-Processing-Based Front-End for Robust ASR -- Generative Model-Based Speech Enhancement -- Denoising Autoencoder -- Discriminative Microphone Array Enhancement -- Learning Robust Feature Representation -- Training Data Augmentation -- Adaptation and Augmented Features -- Novel Model Topologies -- Novel Objective Criteria -- Benchmark Data, Tools, and Systems.
520
$a
This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research.
650
0
$a
Automatic speech recognition.
$3
753709
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Signal, Image and Speech Processing.
$3
891073
650
2 4
$a
Language Translation and Linguistics.
$3
892561
650
2 4
$a
Linguistics, general.
$3
2181944
700
1
$a
Watanabe, Shinji.
$3
3264058
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-64680-0
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9323815
電子資源
11.線上閱覽_V
電子書
EB TK7895.S65
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入