語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematical problems of the dynamic...
~
Skiba, Yuri N.
FindBook
Google Book
Amazon
博客來
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere/ by Yuri N. Skiba.
作者:
Skiba, Yuri N.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xii, 239 p. :ill., digital ;24 cm.
內容註:
Chapter 01- Introduction -- Chapter 02- Spaces of Functions on a Sphere -- Chapter 03- Solvability of Vorticity Equation on a Sphere -- Chapter 04- Dynamics of Ideal Fluid on a Sphere -- Chapter 05- Stability of Rossby-Haurwitz (RH) Waves -- Chapter 06- Stability of Modons and Wu-Verkley waves -- Chapter 07- Linear and Nonlinear Stability of Flows -- Chapter 08- Numerical Study of Linear Stability -- References.
Contained By:
Springer eBooks
標題:
Fluid dynamics - Mathematics. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-65412-6
ISBN:
9783319654126
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere
Skiba, Yuri N.
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere
[electronic resource] /by Yuri N. Skiba. - Cham :Springer International Publishing :2017. - xii, 239 p. :ill., digital ;24 cm.
Chapter 01- Introduction -- Chapter 02- Spaces of Functions on a Sphere -- Chapter 03- Solvability of Vorticity Equation on a Sphere -- Chapter 04- Dynamics of Ideal Fluid on a Sphere -- Chapter 05- Stability of Rossby-Haurwitz (RH) Waves -- Chapter 06- Stability of Modons and Wu-Verkley waves -- Chapter 07- Linear and Nonlinear Stability of Flows -- Chapter 08- Numerical Study of Linear Stability -- References.
This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.
ISBN: 9783319654126
Standard No.: 10.1007/978-3-319-65412-6doiSubjects--Topical Terms:
664443
Fluid dynamics
--Mathematics.
LC Class. No.: TA357 / .S55 2017
Dewey Class. No.: 620.10640151
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere
LDR
:02284nmm a2200313 a 4500
001
2109119
003
DE-He213
005
20180328095727.0
006
m d
007
cr nn 008maaau
008
180519s2017 gw s 0 eng d
020
$a
9783319654126
$q
(electronic bk.)
020
$a
9783319654119
$q
(paper)
024
7
$a
10.1007/978-3-319-65412-6
$2
doi
035
$a
978-3-319-65412-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA357
$b
.S55 2017
072
7
$a
PBWH
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
620.10640151
$2
23
090
$a
TA357
$b
.S628 2017
100
1
$a
Skiba, Yuri N.
$3
3259165
245
1 0
$a
Mathematical problems of the dynamics of incompressible fluid on a rotating sphere
$h
[electronic resource] /
$c
by Yuri N. Skiba.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xii, 239 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 01- Introduction -- Chapter 02- Spaces of Functions on a Sphere -- Chapter 03- Solvability of Vorticity Equation on a Sphere -- Chapter 04- Dynamics of Ideal Fluid on a Sphere -- Chapter 05- Stability of Rossby-Haurwitz (RH) Waves -- Chapter 06- Stability of Modons and Wu-Verkley waves -- Chapter 07- Linear and Nonlinear Stability of Flows -- Chapter 08- Numerical Study of Linear Stability -- References.
520
$a
This book presents selected mathematical problems involving the dynamics of a two-dimensional viscous and ideal incompressible fluid on a rotating sphere. In this case, the fluid motion is completely governed by the barotropic vorticity equation (BVE), and the viscosity term in the vorticity equation is taken in its general form, which contains the derivative of real degree of the spherical Laplace operator. This work builds a bridge between basic concepts and concrete outcomes by pursuing a rich combination of theoretical, analytical and numerical approaches, and is recommended for specialists developing mathematical methods for application to problems in physics, hydrodynamics, meteorology and geophysics, as well for upper undergraduate or graduate students in the areas of dynamics of incompressible fluid on a rotating sphere, theory of functions on a sphere, and flow stability.
650
0
$a
Fluid dynamics
$x
Mathematics.
$3
664443
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
1566152
650
2 4
$a
Math. Appl. in Environmental Science.
$3
891071
650
2 4
$a
Atmospheric Sciences.
$3
1019179
650
2 4
$a
Fluid- and Aerodynamics.
$3
1066670
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-65412-6
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9323521
電子資源
11.線上閱覽_V
電子書
EB TA357 .S55 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入