語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Introduction to learning classifier ...
~
Urbanowicz, Ryan J.
FindBook
Google Book
Amazon
博客來
Introduction to learning classifier systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Introduction to learning classifier systems/ by Ryan J. Urbanowicz, Will N. Browne.
作者:
Urbanowicz, Ryan J.
其他作者:
Browne, Will N.
出版者:
Berlin, Heidelberg :Springer Berlin Heidelberg : : 2017.,
面頁冊數:
xiii, 123 p. :ill., digital ;24 cm.
內容註:
LCSs in a Nutshell -- LCS Concepts -- Functional Cycle Components -- LCS Adaptability -- Applying LCSs.
Contained By:
Springer eBooks
標題:
Learning classifier systems. -
電子資源:
http://dx.doi.org/10.1007/978-3-662-55007-6
ISBN:
9783662550076
Introduction to learning classifier systems
Urbanowicz, Ryan J.
Introduction to learning classifier systems
[electronic resource] /by Ryan J. Urbanowicz, Will N. Browne. - Berlin, Heidelberg :Springer Berlin Heidelberg :2017. - xiii, 123 p. :ill., digital ;24 cm. - SpringerBriefs in intelligent systems, artificial intelligence, multiagent systems, and cognitive robotics,2196-548X. - SpringerBriefs in intelligent systems, artificial intelligence, multiagent systems, and cognitive robotics..
LCSs in a Nutshell -- LCS Concepts -- Functional Cycle Components -- LCS Adaptability -- Applying LCSs.
This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners.
ISBN: 9783662550076
Standard No.: 10.1007/978-3-662-55007-6doiSubjects--Topical Terms:
3251649
Learning classifier systems.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Introduction to learning classifier systems
LDR
:02223nmm a2200337 a 4500
001
2106119
003
DE-He213
005
20180313162230.0
006
m d
007
cr nn 008maaau
008
180417s2017 gw s 0 eng d
020
$a
9783662550076
$q
(electronic bk.)
020
$a
9783662550069
$q
(paper)
024
7
$a
10.1007/978-3-662-55007-6
$2
doi
035
$a
978-3-662-55007-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.U72 2017
100
1
$a
Urbanowicz, Ryan J.
$3
3251647
245
1 0
$a
Introduction to learning classifier systems
$h
[electronic resource] /
$c
by Ryan J. Urbanowicz, Will N. Browne.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2017.
300
$a
xiii, 123 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in intelligent systems, artificial intelligence, multiagent systems, and cognitive robotics,
$x
2196-548X
505
0
$a
LCSs in a Nutshell -- LCS Concepts -- Functional Cycle Components -- LCS Adaptability -- Applying LCSs.
520
$a
This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners.
650
0
$a
Learning classifier systems.
$3
3251649
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Optimization.
$3
891104
650
2 4
$a
Computational Biology/Bioinformatics.
$3
898313
650
2 4
$a
Control, Robotics, Mechatronics.
$3
1002220
650
2 4
$a
Theory of Computation.
$3
892514
700
1
$a
Browne, Will N.
$3
3251648
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in intelligent systems, artificial intelligence, multiagent systems, and cognitive robotics.
$3
2162468
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-55007-6
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9322651
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入