語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Noncausal stochastic calculus
~
Ogawa, Shigeyoshi.
FindBook
Google Book
Amazon
博客來
Noncausal stochastic calculus
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Noncausal stochastic calculus/ by Shigeyoshi Ogawa.
作者:
Ogawa, Shigeyoshi.
出版者:
Tokyo :Springer Japan : : 2017.,
面頁冊數:
xii, 210 p. :ill., digital ;24 cm.
內容註:
1 Introduction - Why the Causality? -- 2 Preliminary - Causal calculus -- 3 Noncausal Calculus -- 4 Noncausal Integral and Wiener Chaos -- 5 Noncausal SDEs -- 6 Brownian Particle Equation -- 7 Noncausal SIE -- 8 Stochastic Fourier Transformation -- 9 Appendices to Chapter 2 -- 10 Appendices 2 - Comments and Proofs -- Index.
Contained By:
Springer eBooks
標題:
Stochastic analysis. -
電子資源:
http://dx.doi.org/10.1007/978-4-431-56576-5
ISBN:
9784431565765
Noncausal stochastic calculus
Ogawa, Shigeyoshi.
Noncausal stochastic calculus
[electronic resource] /by Shigeyoshi Ogawa. - Tokyo :Springer Japan :2017. - xii, 210 p. :ill., digital ;24 cm.
1 Introduction - Why the Causality? -- 2 Preliminary - Causal calculus -- 3 Noncausal Calculus -- 4 Noncausal Integral and Wiener Chaos -- 5 Noncausal SDEs -- 6 Brownian Particle Equation -- 7 Noncausal SIE -- 8 Stochastic Fourier Transformation -- 9 Appendices to Chapter 2 -- 10 Appendices 2 - Comments and Proofs -- Index.
This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well.
ISBN: 9784431565765
Standard No.: 10.1007/978-4-431-56576-5doiSubjects--Topical Terms:
533923
Stochastic analysis.
LC Class. No.: QA274.2
Dewey Class. No.: 519.22
Noncausal stochastic calculus
LDR
:02422nmm a2200313 a 4500
001
2105746
003
DE-He213
005
20170726044015.0
006
m d
007
cr nn 008maaau
008
180417s2017 ja s 0 eng d
020
$a
9784431565765
$q
(electronic bk.)
020
$a
9784431565741
$q
(paper)
024
7
$a
10.1007/978-4-431-56576-5
$2
doi
035
$a
978-4-431-56576-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.2
072
7
$a
PB
$2
bicssc
072
7
$a
MAT000000
$2
bisacsh
082
0 4
$a
519.22
$2
23
090
$a
QA274.2
$b
.O34 2017
100
1
$a
Ogawa, Shigeyoshi.
$3
782545
245
1 0
$a
Noncausal stochastic calculus
$h
[electronic resource] /
$c
by Shigeyoshi Ogawa.
260
$a
Tokyo :
$b
Springer Japan :
$b
Imprint: Springer,
$c
2017.
300
$a
xii, 210 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1 Introduction - Why the Causality? -- 2 Preliminary - Causal calculus -- 3 Noncausal Calculus -- 4 Noncausal Integral and Wiener Chaos -- 5 Noncausal SDEs -- 6 Brownian Particle Equation -- 7 Noncausal SIE -- 8 Stochastic Fourier Transformation -- 9 Appendices to Chapter 2 -- 10 Appendices 2 - Comments and Proofs -- Index.
520
$a
This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well.
650
0
$a
Stochastic analysis.
$3
533923
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Mathematics, general.
$3
895821
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-4-431-56576-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9322278
電子資源
11.線上閱覽_V
電子書
EB QA274.2
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入