Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Random obstacle problems = Ecole d'E...
~
SpringerLink (Online service)
Linked to FindBook
Google Book
Amazon
博客來
Random obstacle problems = Ecole d'Ete de Probabilites de Saint-Flour XLV - 2015 /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Random obstacle problems/ by Lorenzo Zambotti.
Reminder of title:
Ecole d'Ete de Probabilites de Saint-Flour XLV - 2015 /
Author:
Zambotti, Lorenzo.
Published:
Cham :Springer International Publishing : : 2017.,
Description:
ix, 162 p. :ill., digital ;24 cm.
[NT 15003449]:
1 Introduction -- 2 The reflecting Brownian motion -- 3 Bessel processes -- 4 The stochastic heat equation -- 5 Obstacle problems -- 6 Integration by Parts Formulae -- 7 The contact set -- References.
Contained By:
Springer eBooks
Subject:
Stochastic partial differential equations - Congresses. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-52096-4
ISBN:
9783319520964
Random obstacle problems = Ecole d'Ete de Probabilites de Saint-Flour XLV - 2015 /
Zambotti, Lorenzo.
Random obstacle problems
Ecole d'Ete de Probabilites de Saint-Flour XLV - 2015 /[electronic resource] :by Lorenzo Zambotti. - Cham :Springer International Publishing :2017. - ix, 162 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21810075-8434 ;. - Lecture notes in mathematics ;2181..
1 Introduction -- 2 The reflecting Brownian motion -- 3 Bessel processes -- 4 The stochastic heat equation -- 5 Obstacle problems -- 6 Integration by Parts Formulae -- 7 The contact set -- References.
Studying the fine properties of solutions to Stochastic (Partial) Differential Equations with reflection at a boundary, this book begins with a discussion of classical one-dimensional diffusions as the reflecting Brownian motion, devoting a chapter to Bessel processes, and moves on to function-valued solutions to SPDEs. Inspired by the classical stochastic calculus for diffusions, which is unfortunately still unavailable in infinite dimensions, it uses integration by parts formulae on convex sets of paths in order to describe the behaviour of the solutions at the boundary and the contact set between the solution and the obstacle. The text may serve as an introduction to space-time white noise, SPDEs and monotone gradient systems. Numerous open research problems in both classical and new topics are proposed.
ISBN: 9783319520964
Standard No.: 10.1007/978-3-319-52096-4doiSubjects--Topical Terms:
906735
Stochastic partial differential equations
--Congresses.
LC Class. No.: QA274.25 / .Z36 2017
Dewey Class. No.: 519.22
Random obstacle problems = Ecole d'Ete de Probabilites de Saint-Flour XLV - 2015 /
LDR
:02087nmm a2200337 a 4500
001
2090443
003
DE-He213
005
20170829101504.0
006
m d
007
cr nn 008maaau
008
171013s2017 gw s 0 eng d
020
$a
9783319520964
$q
(electronic bk.)
020
$a
9783319520957
$q
(paper)
024
7
$a
10.1007/978-3-319-52096-4
$2
doi
035
$a
978-3-319-52096-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.25
$b
.Z36 2017
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.22
$2
23
090
$a
QA274.25
$b
.Z24 2017
100
1
$a
Zambotti, Lorenzo.
$3
3221992
245
1 0
$a
Random obstacle problems
$h
[electronic resource] :
$b
Ecole d'Ete de Probabilites de Saint-Flour XLV - 2015 /
$c
by Lorenzo Zambotti.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
ix, 162 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2181
505
0
$a
1 Introduction -- 2 The reflecting Brownian motion -- 3 Bessel processes -- 4 The stochastic heat equation -- 5 Obstacle problems -- 6 Integration by Parts Formulae -- 7 The contact set -- References.
520
$a
Studying the fine properties of solutions to Stochastic (Partial) Differential Equations with reflection at a boundary, this book begins with a discussion of classical one-dimensional diffusions as the reflecting Brownian motion, devoting a chapter to Bessel processes, and moves on to function-valued solutions to SPDEs. Inspired by the classical stochastic calculus for diffusions, which is unfortunately still unavailable in infinite dimensions, it uses integration by parts formulae on convex sets of paths in order to describe the behaviour of the solutions at the boundary and the contact set between the solution and the obstacle. The text may serve as an introduction to space-time white noise, SPDEs and monotone gradient systems. Numerous open research problems in both classical and new topics are proposed.
650
0
$a
Stochastic partial differential equations
$v
Congresses.
$3
906735
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
710
2
$a
SpringerLink (Online service)
$3
836513
711
2
$a
Ecole d'ete de probabilites de Saint-Flour
$n
(45th :
$d
2015 :
$c
Saint-Flour, France)
$3
3221994
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2181.
$3
3221993
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-52096-4
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9316615
電子資源
11.線上閱覽_V
電子書
EB QA274.25 .Z36 2017
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login