語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Conformance checking and diagnosis i...
~
Munoz-Gama, Jorge.
FindBook
Google Book
Amazon
博客來
Conformance checking and diagnosis in process mining = comparing observed and modeled processes /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Conformance checking and diagnosis in process mining/ by Jorge Munoz-Gama.
其他題名:
comparing observed and modeled processes /
作者:
Munoz-Gama, Jorge.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xiv, 202 p. :ill., digital ;24 cm.
內容註:
Introduction -- 1.1 Processes, Models, and Data -- 1.2 Process Mining -- 1.3 Conformance Checking Explained: The University Case -- 1.4 Book Outline -- Part I Conformance Checking in Process Mining -- 2 Conformance Checking and its Challenges -- 2.1 The Role of Process Models in Conformance Checking -- 2.2 Dimensions of Conformance Checking -- 2.3 Replay-based and Align-based Conformance Checking -- 2.4 Challenges of Conformance Checking -- 3 Conformance Checking and its Elements -- 3.1 Basic Notations -- 3.2 Event Log -- 3.3 Process Models -- 3.4 Process Modeling Formalisms -- 3.4.1 Petri Nets -- 3.4.2 Workflow Nets -- 3.4.3 Other Formalisms -- Part II Precision in Conformance Checking -- 4 Precision in Conformance Checking -- 4.1 Precision: The Forgotten Dimension -- 4.2 The Importance of Precision -- 4.3 Measures of Precision -- 4.4 Requirements for Precision -- 5 Measuring Precision -- 5.1 Precision based on Escaping Arcs -- 5.2 Constructing the Observed Behavior -- 5.3 Incorporating Modeled Behavior -- 5.4 Detecting Escaping Arcs and Evaluating Precision -- 5.5 Minimal Imprecise Traces -- 5.6 Limitations and Extensions -- 5.6.1 Unfitting Scenario -- 5.6.2 Indeterministic Scenario -- 5.7 Summary -- 6 Evaluating Precision in Practice -- 6.1 The University Case: The Appeals Process -- 6.2 Experimental Evaluation -- 7 Handling Noise and Incompleteness -- 7.1 Introduction -- 7.2 Robustness on the Precision -- 7.3 Confidence on Precision -- 7.3.1 Upper Confidence Value -- 7.3.2 Lower Confidence Value -- 7.4 Experimental Results -- 7.5 Summary -- 8 Assessing Severity -- 8.1 Introduction -- 8.2 Severity of an Escaping Arc -- 8.2.1 Weight of an Escaping Arc -- 8.2.2 Alternation of an Escaping Arc -- 8.2.3 Stability of an Escaping Arc -- 8.2.4 Criticality of an Escaping Arc -- 8.2.5 Visualizing the Severity -- 8.2.6 Addressing Precision Issues based on Severity -- 8.3 Experimental Results -- 8.4 Summary -- 9 Handling non-Fitness -- 9.1 Introduction -- 9.2 Cost-Optimal Alignment -- 9.3 Precision based on Alignments -- 9.4 Precision from 1-Alignment -- 9.5 Summary -- 10 Alternative and Variants to Handle non-Fitness -- 10.1 Precision from All-Alignment -- 10.2 Precision from Representative-Alignment -- 10.3 Abstractions for the Precision based on Alignments -- 10.3.1 Abstraction on the Order -- 10.3.2 Abstraction on the Direction -- 10.4 Summary -- 11 Handling non-Fitness in Practice -- 11.1 The University Case: The Exchange Process -- 11.2 Experimental Results -- Part III Decomposition in Conformance Checking -- 12 Decomposing Conformance Checking. -12.1 Introduction -- 12.2 Single-Entry Single-Exit and Refined Process Structure Tree -- 12.3 Decomposing Conformance Checking using SESEs -- 12.4 Summary -- 13 Decomposing for Fitness Checking -- 13.1 Introduction -- 13.2 Bridging a Valid Decomposition -- 13.3 Decomposition with invisible/duplicates -- 13.4 Summary -- 14 Decomposing Conformance Checking in Practice -- 14.1 The Bank Case: The Transaction Process -- 14.2 Experimental Results -- 15 Diagnosing Conformance -- 15.1 Introduction -- 15.2 Topological Conformance Diagnosis -- 15.3 Multi-level Conformance Diagnosis and its Applications -- 15.3.1 Stand-alone Checking -- 15.3.2 Multi-Level Analysis -- 15.3.3 Filtering -- 15.4 Experimental Results -- 15.5 Summary -- 16 Data-aware Processes and Alignments -- 16.1 Introduction -- 16.2 Data-aware Processes -- 16.2.1 Petri nets with Data -- 16.2.2 Event Logs and Relating Models to Event Logs -- 16.2.3 Data Alignments -- 16.3 Summary -- 17 Decomposing Data-aware Conformance -- 17.1 Introduction -- 17.2 Valid Decomposition of Data-aware Models -- 17.3 SESE-based Strategy for a Valid Decomposition -- 17.4 Implementation and Experimental Results -- 17.5 Summary -- 18 Event-based Real-time Decomposed Conformance Checking -- 18.1 Introduction -- 18.2 Event-based Real-time Decomposed Conformance -- 18.2.1 Model and Log Decomposition -- 18.2.2 Event-based Heuristic Replay -- 18.3 Experimental Results -- 18.4 Summary -- Part IV Conclusions and Future Work -- 19 Conclusions -- 19.1 Conclusion and Reflection -- 19.2 Summary of Contributions -- 19.3 Challenges and Directions for Future Work -- References.
Contained By:
Springer eBooks
標題:
Data mining. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-49451-7
ISBN:
9783319494517
Conformance checking and diagnosis in process mining = comparing observed and modeled processes /
Munoz-Gama, Jorge.
Conformance checking and diagnosis in process mining
comparing observed and modeled processes /[electronic resource] :by Jorge Munoz-Gama. - Cham :Springer International Publishing :2016. - xiv, 202 p. :ill., digital ;24 cm. - Lecture notes in business information processing,2701865-1348 ;. - Lecture notes in business information processing ;270..
Introduction -- 1.1 Processes, Models, and Data -- 1.2 Process Mining -- 1.3 Conformance Checking Explained: The University Case -- 1.4 Book Outline -- Part I Conformance Checking in Process Mining -- 2 Conformance Checking and its Challenges -- 2.1 The Role of Process Models in Conformance Checking -- 2.2 Dimensions of Conformance Checking -- 2.3 Replay-based and Align-based Conformance Checking -- 2.4 Challenges of Conformance Checking -- 3 Conformance Checking and its Elements -- 3.1 Basic Notations -- 3.2 Event Log -- 3.3 Process Models -- 3.4 Process Modeling Formalisms -- 3.4.1 Petri Nets -- 3.4.2 Workflow Nets -- 3.4.3 Other Formalisms -- Part II Precision in Conformance Checking -- 4 Precision in Conformance Checking -- 4.1 Precision: The Forgotten Dimension -- 4.2 The Importance of Precision -- 4.3 Measures of Precision -- 4.4 Requirements for Precision -- 5 Measuring Precision -- 5.1 Precision based on Escaping Arcs -- 5.2 Constructing the Observed Behavior -- 5.3 Incorporating Modeled Behavior -- 5.4 Detecting Escaping Arcs and Evaluating Precision -- 5.5 Minimal Imprecise Traces -- 5.6 Limitations and Extensions -- 5.6.1 Unfitting Scenario -- 5.6.2 Indeterministic Scenario -- 5.7 Summary -- 6 Evaluating Precision in Practice -- 6.1 The University Case: The Appeals Process -- 6.2 Experimental Evaluation -- 7 Handling Noise and Incompleteness -- 7.1 Introduction -- 7.2 Robustness on the Precision -- 7.3 Confidence on Precision -- 7.3.1 Upper Confidence Value -- 7.3.2 Lower Confidence Value -- 7.4 Experimental Results -- 7.5 Summary -- 8 Assessing Severity -- 8.1 Introduction -- 8.2 Severity of an Escaping Arc -- 8.2.1 Weight of an Escaping Arc -- 8.2.2 Alternation of an Escaping Arc -- 8.2.3 Stability of an Escaping Arc -- 8.2.4 Criticality of an Escaping Arc -- 8.2.5 Visualizing the Severity -- 8.2.6 Addressing Precision Issues based on Severity -- 8.3 Experimental Results -- 8.4 Summary -- 9 Handling non-Fitness -- 9.1 Introduction -- 9.2 Cost-Optimal Alignment -- 9.3 Precision based on Alignments -- 9.4 Precision from 1-Alignment -- 9.5 Summary -- 10 Alternative and Variants to Handle non-Fitness -- 10.1 Precision from All-Alignment -- 10.2 Precision from Representative-Alignment -- 10.3 Abstractions for the Precision based on Alignments -- 10.3.1 Abstraction on the Order -- 10.3.2 Abstraction on the Direction -- 10.4 Summary -- 11 Handling non-Fitness in Practice -- 11.1 The University Case: The Exchange Process -- 11.2 Experimental Results -- Part III Decomposition in Conformance Checking -- 12 Decomposing Conformance Checking. -12.1 Introduction -- 12.2 Single-Entry Single-Exit and Refined Process Structure Tree -- 12.3 Decomposing Conformance Checking using SESEs -- 12.4 Summary -- 13 Decomposing for Fitness Checking -- 13.1 Introduction -- 13.2 Bridging a Valid Decomposition -- 13.3 Decomposition with invisible/duplicates -- 13.4 Summary -- 14 Decomposing Conformance Checking in Practice -- 14.1 The Bank Case: The Transaction Process -- 14.2 Experimental Results -- 15 Diagnosing Conformance -- 15.1 Introduction -- 15.2 Topological Conformance Diagnosis -- 15.3 Multi-level Conformance Diagnosis and its Applications -- 15.3.1 Stand-alone Checking -- 15.3.2 Multi-Level Analysis -- 15.3.3 Filtering -- 15.4 Experimental Results -- 15.5 Summary -- 16 Data-aware Processes and Alignments -- 16.1 Introduction -- 16.2 Data-aware Processes -- 16.2.1 Petri nets with Data -- 16.2.2 Event Logs and Relating Models to Event Logs -- 16.2.3 Data Alignments -- 16.3 Summary -- 17 Decomposing Data-aware Conformance -- 17.1 Introduction -- 17.2 Valid Decomposition of Data-aware Models -- 17.3 SESE-based Strategy for a Valid Decomposition -- 17.4 Implementation and Experimental Results -- 17.5 Summary -- 18 Event-based Real-time Decomposed Conformance Checking -- 18.1 Introduction -- 18.2 Event-based Real-time Decomposed Conformance -- 18.2.1 Model and Log Decomposition -- 18.2.2 Event-based Heuristic Replay -- 18.3 Experimental Results -- 18.4 Summary -- Part IV Conclusions and Future Work -- 19 Conclusions -- 19.1 Conclusion and Reflection -- 19.2 Summary of Contributions -- 19.3 Challenges and Directions for Future Work -- References.
Process mining techniques can be used to discover, analyze and improve real processes, by extracting models from observed behavior. The aim of this book is conformance checking, one of the main areas of process mining. In conformance checking, existing process models are compared with actual observations of the process in order to assess their quality. Conformance checking techniques are a way to visualize the differences between assumed process represented in the model and the real process in the event log, pinpointing possible problems to address, and the business process management results that rely on these models. This book combines both application and research perspectives. It provides concrete use cases that illustrate the problems addressed by the techniques in the book, but at the same time, it contains complete conceptualization and formalization of the problem and the techniques, and through evaluations on the quality and the performance of the proposed techniques. Hence, this book brings the opportunity for business analysts willing to improve their organization processes, and also data scientists interested on the topic of process-oriented data science.
ISBN: 9783319494517
Standard No.: 10.1007/978-3-319-49451-7doiSubjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Conformance checking and diagnosis in process mining = comparing observed and modeled processes /
LDR
:06518nmm a2200349 a 4500
001
2080591
003
DE-He213
005
20161124110915.0
006
m d
007
cr nn 008maaau
008
170616s2016 gw s 0 eng d
020
$a
9783319494517
$q
(electronic bk.)
020
$a
9783319494500
$q
(paper)
024
7
$a
10.1007/978-3-319-49451-7
$2
doi
035
$a
978-3-319-49451-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
JPP
$2
bicssc
072
7
$a
UB
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
POL017000
$2
bisacsh
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
M967 2016
100
1
$a
Munoz-Gama, Jorge.
$3
3200610
245
1 0
$a
Conformance checking and diagnosis in process mining
$h
[electronic resource] :
$b
comparing observed and modeled processes /
$c
by Jorge Munoz-Gama.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiv, 202 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in business information processing,
$x
1865-1348 ;
$v
270
505
0
$a
Introduction -- 1.1 Processes, Models, and Data -- 1.2 Process Mining -- 1.3 Conformance Checking Explained: The University Case -- 1.4 Book Outline -- Part I Conformance Checking in Process Mining -- 2 Conformance Checking and its Challenges -- 2.1 The Role of Process Models in Conformance Checking -- 2.2 Dimensions of Conformance Checking -- 2.3 Replay-based and Align-based Conformance Checking -- 2.4 Challenges of Conformance Checking -- 3 Conformance Checking and its Elements -- 3.1 Basic Notations -- 3.2 Event Log -- 3.3 Process Models -- 3.4 Process Modeling Formalisms -- 3.4.1 Petri Nets -- 3.4.2 Workflow Nets -- 3.4.3 Other Formalisms -- Part II Precision in Conformance Checking -- 4 Precision in Conformance Checking -- 4.1 Precision: The Forgotten Dimension -- 4.2 The Importance of Precision -- 4.3 Measures of Precision -- 4.4 Requirements for Precision -- 5 Measuring Precision -- 5.1 Precision based on Escaping Arcs -- 5.2 Constructing the Observed Behavior -- 5.3 Incorporating Modeled Behavior -- 5.4 Detecting Escaping Arcs and Evaluating Precision -- 5.5 Minimal Imprecise Traces -- 5.6 Limitations and Extensions -- 5.6.1 Unfitting Scenario -- 5.6.2 Indeterministic Scenario -- 5.7 Summary -- 6 Evaluating Precision in Practice -- 6.1 The University Case: The Appeals Process -- 6.2 Experimental Evaluation -- 7 Handling Noise and Incompleteness -- 7.1 Introduction -- 7.2 Robustness on the Precision -- 7.3 Confidence on Precision -- 7.3.1 Upper Confidence Value -- 7.3.2 Lower Confidence Value -- 7.4 Experimental Results -- 7.5 Summary -- 8 Assessing Severity -- 8.1 Introduction -- 8.2 Severity of an Escaping Arc -- 8.2.1 Weight of an Escaping Arc -- 8.2.2 Alternation of an Escaping Arc -- 8.2.3 Stability of an Escaping Arc -- 8.2.4 Criticality of an Escaping Arc -- 8.2.5 Visualizing the Severity -- 8.2.6 Addressing Precision Issues based on Severity -- 8.3 Experimental Results -- 8.4 Summary -- 9 Handling non-Fitness -- 9.1 Introduction -- 9.2 Cost-Optimal Alignment -- 9.3 Precision based on Alignments -- 9.4 Precision from 1-Alignment -- 9.5 Summary -- 10 Alternative and Variants to Handle non-Fitness -- 10.1 Precision from All-Alignment -- 10.2 Precision from Representative-Alignment -- 10.3 Abstractions for the Precision based on Alignments -- 10.3.1 Abstraction on the Order -- 10.3.2 Abstraction on the Direction -- 10.4 Summary -- 11 Handling non-Fitness in Practice -- 11.1 The University Case: The Exchange Process -- 11.2 Experimental Results -- Part III Decomposition in Conformance Checking -- 12 Decomposing Conformance Checking. -12.1 Introduction -- 12.2 Single-Entry Single-Exit and Refined Process Structure Tree -- 12.3 Decomposing Conformance Checking using SESEs -- 12.4 Summary -- 13 Decomposing for Fitness Checking -- 13.1 Introduction -- 13.2 Bridging a Valid Decomposition -- 13.3 Decomposition with invisible/duplicates -- 13.4 Summary -- 14 Decomposing Conformance Checking in Practice -- 14.1 The Bank Case: The Transaction Process -- 14.2 Experimental Results -- 15 Diagnosing Conformance -- 15.1 Introduction -- 15.2 Topological Conformance Diagnosis -- 15.3 Multi-level Conformance Diagnosis and its Applications -- 15.3.1 Stand-alone Checking -- 15.3.2 Multi-Level Analysis -- 15.3.3 Filtering -- 15.4 Experimental Results -- 15.5 Summary -- 16 Data-aware Processes and Alignments -- 16.1 Introduction -- 16.2 Data-aware Processes -- 16.2.1 Petri nets with Data -- 16.2.2 Event Logs and Relating Models to Event Logs -- 16.2.3 Data Alignments -- 16.3 Summary -- 17 Decomposing Data-aware Conformance -- 17.1 Introduction -- 17.2 Valid Decomposition of Data-aware Models -- 17.3 SESE-based Strategy for a Valid Decomposition -- 17.4 Implementation and Experimental Results -- 17.5 Summary -- 18 Event-based Real-time Decomposed Conformance Checking -- 18.1 Introduction -- 18.2 Event-based Real-time Decomposed Conformance -- 18.2.1 Model and Log Decomposition -- 18.2.2 Event-based Heuristic Replay -- 18.3 Experimental Results -- 18.4 Summary -- Part IV Conclusions and Future Work -- 19 Conclusions -- 19.1 Conclusion and Reflection -- 19.2 Summary of Contributions -- 19.3 Challenges and Directions for Future Work -- References.
520
$a
Process mining techniques can be used to discover, analyze and improve real processes, by extracting models from observed behavior. The aim of this book is conformance checking, one of the main areas of process mining. In conformance checking, existing process models are compared with actual observations of the process in order to assess their quality. Conformance checking techniques are a way to visualize the differences between assumed process represented in the model and the real process in the event log, pinpointing possible problems to address, and the business process management results that rely on these models. This book combines both application and research perspectives. It provides concrete use cases that illustrate the problems addressed by the techniques in the book, but at the same time, it contains complete conceptualization and formalization of the problem and the techniques, and through evaluations on the quality and the performance of the proposed techniques. Hence, this book brings the opportunity for business analysts willing to improve their organization processes, and also data scientists interested on the topic of process-oriented data science.
650
0
$a
Data mining.
$3
562972
650
0
$a
Business
$x
Data processing.
$3
527441
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Computer Appl. in Administrative Data Processing.
$3
892567
650
2 4
$a
Business Process Management.
$3
2134548
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in business information processing ;
$v
270.
$3
3200611
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-49451-7
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9312472
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343 M967 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入