語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An introduction to data analysis usi...
~
James, Simon.
FindBook
Google Book
Amazon
博客來
An introduction to data analysis using aggregation functions in R
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An introduction to data analysis using aggregation functions in R/ by Simon James.
作者:
James, Simon.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
x, 199 p. :ill. (some col.), digital ;24 cm.
內容註:
Aggregating data with averaging functions -- Transforming data -- Weighted averaging -- Averaging with interaction -- Fitting aggregation functions to empirical data -- Solutions.
Contained By:
Springer eBooks
標題:
Mathematical statistics - Data processing. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-46762-7
ISBN:
9783319467627
An introduction to data analysis using aggregation functions in R
James, Simon.
An introduction to data analysis using aggregation functions in R
[electronic resource] /by Simon James. - Cham :Springer International Publishing :2016. - x, 199 p. :ill. (some col.), digital ;24 cm.
Aggregating data with averaging functions -- Transforming data -- Weighted averaging -- Averaging with interaction -- Fitting aggregation functions to empirical data -- Solutions.
This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical or machine learning techniques. Readers will learn how to program key functions in R without obtaining an extensive programming background. Sections of the textbook cover background information and context, aggregating data with averaging functions, power means, and weighted averages including the Borda count. It explains how to transform data using normalization or scaling and standardization, as well as log, polynomial, and rank transforms. The section on averaging with interaction introduces OWS functions and the Choquet integral, simple functions that allow the handling of non-independent inputs. The final chapters examine software analysis with an emphasis on parameter identification rather than technical aspects. This textbook is designed for students studying computer science or business who are interested in tools for summarizing and interpreting data, without requiring a strong mathematical background. It is also suitable for those working on sophisticated data science techniques who seek a better conception of fundamental data aggregation. Solutions to the practice questions are included in the textbook.
ISBN: 9783319467627
Standard No.: 10.1007/978-3-319-46762-7doiSubjects--Topical Terms:
532521
Mathematical statistics
--Data processing.
LC Class. No.: QA276.45.R3
Dewey Class. No.: 519.50285
An introduction to data analysis using aggregation functions in R
LDR
:02596nmm a2200325 a 4500
001
2080567
003
DE-He213
005
20161107123654.0
006
m d
007
cr nn 008maaau
008
170616s2016 gw s 0 eng d
020
$a
9783319467627
$q
(electronic bk.)
020
$a
9783319467610
$q
(paper)
024
7
$a
10.1007/978-3-319-46762-7
$2
doi
035
$a
978-3-319-46762-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.45.R3
072
7
$a
UMA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
COM018000
$2
bisacsh
082
0 4
$a
519.50285
$2
23
090
$a
QA276.45.R3
$b
J29 2016
100
1
$a
James, Simon.
$3
634931
245
1 3
$a
An introduction to data analysis using aggregation functions in R
$h
[electronic resource] /
$c
by Simon James.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 199 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Aggregating data with averaging functions -- Transforming data -- Weighted averaging -- Averaging with interaction -- Fitting aggregation functions to empirical data -- Solutions.
520
$a
This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical or machine learning techniques. Readers will learn how to program key functions in R without obtaining an extensive programming background. Sections of the textbook cover background information and context, aggregating data with averaging functions, power means, and weighted averages including the Borda count. It explains how to transform data using normalization or scaling and standardization, as well as log, polynomial, and rank transforms. The section on averaging with interaction introduces OWS functions and the Choquet integral, simple functions that allow the handling of non-independent inputs. The final chapters examine software analysis with an emphasis on parameter identification rather than technical aspects. This textbook is designed for students studying computer science or business who are interested in tools for summarizing and interpreting data, without requiring a strong mathematical background. It is also suitable for those working on sophisticated data science techniques who seek a better conception of fundamental data aggregation. Solutions to the practice questions are included in the textbook.
650
0
$a
Mathematical statistics
$x
Data processing.
$3
532521
650
0
$a
R (Computer program language)
$3
784593
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Computing Methodologies.
$3
830243
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
1005896
650
2 4
$a
Applications of Mathematics.
$3
890893
650
2 4
$a
Mathematics of Computing.
$3
891213
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-46762-7
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9312448
電子資源
11.線上閱覽_V
電子書
EB QA276.45.R3 J29 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入