語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Coding Strategies and Implementation...
~
Tsai, Tsung-Han.
FindBook
Google Book
Amazon
博客來
Coding Strategies and Implementations of Compressive Sensing.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Coding Strategies and Implementations of Compressive Sensing./
作者:
Tsai, Tsung-Han.
面頁冊數:
191 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
Contained By:
Dissertation Abstracts International77-10B(E).
標題:
Optics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10109759
ISBN:
9781339730288
Coding Strategies and Implementations of Compressive Sensing.
Tsai, Tsung-Han.
Coding Strategies and Implementations of Compressive Sensing.
- 191 p.
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
Thesis (Ph.D.)--Duke University, 2016.
This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.
ISBN: 9781339730288Subjects--Topical Terms:
517925
Optics.
Coding Strategies and Implementations of Compressive Sensing.
LDR
:03610nmm a2200325 4500
001
2077249
005
20161114130242.5
008
170521s2016 ||||||||||||||||| ||eng d
020
$a
9781339730288
035
$a
(MiAaPQ)AAI10109759
035
$a
AAI10109759
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Tsai, Tsung-Han.
$3
2106462
245
1 0
$a
Coding Strategies and Implementations of Compressive Sensing.
300
$a
191 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
500
$a
Adviser: David J. Brady.
502
$a
Thesis (Ph.D.)--Duke University, 2016.
520
$a
This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.
520
$a
This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system.
520
$a
Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity.
520
$a
Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.
590
$a
School code: 0066.
650
4
$a
Optics.
$3
517925
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Acoustics.
$3
879105
690
$a
0752
690
$a
0544
690
$a
0986
710
2
$a
Duke University.
$b
Electrical and Computer Engineering.
$3
1032075
773
0
$t
Dissertation Abstracts International
$g
77-10B(E).
790
$a
0066
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10109759
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9310117
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入