語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Investigating source processes of is...
~
Chiang, Andrea.
FindBook
Google Book
Amazon
博客來
Investigating source processes of isotropic events.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Investigating source processes of isotropic events./
作者:
Chiang, Andrea.
面頁冊數:
126 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
Contained By:
Dissertation Abstracts International77-08B(E).
標題:
Geophysics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10086059
ISBN:
9781339591926
Investigating source processes of isotropic events.
Chiang, Andrea.
Investigating source processes of isotropic events.
- 126 p.
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 2015.
This dissertation demonstrates the utility of the complete waveform regional moment tensor inversion for nuclear event discrimination. I explore the source processes and associated uncertainties for explosions and earthquakes under the effects of limited station coverage, compound seismic sources, assumptions in velocity models and the corresponding Green's functions, and the effects of shallow source depth and free-surface conditions. The motivation to develop better techniques to obtain reliable source mechanism and assess uncertainties is not limited to nuclear monitoring, but they also provide quantitative information about the characteristics of seismic hazards, local and regional tectonics and in-situ stress fields of the region .
ISBN: 9781339591926Subjects--Topical Terms:
535228
Geophysics.
Investigating source processes of isotropic events.
LDR
:05195nmm a2200313 4500
001
2077193
005
20161114130235.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781339591926
035
$a
(MiAaPQ)AAI10086059
035
$a
AAI10086059
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chiang, Andrea.
$3
3192693
245
1 0
$a
Investigating source processes of isotropic events.
300
$a
126 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-08(E), Section: B.
500
$a
Adviser: Douglas S. Dreger.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 2015.
520
$a
This dissertation demonstrates the utility of the complete waveform regional moment tensor inversion for nuclear event discrimination. I explore the source processes and associated uncertainties for explosions and earthquakes under the effects of limited station coverage, compound seismic sources, assumptions in velocity models and the corresponding Green's functions, and the effects of shallow source depth and free-surface conditions. The motivation to develop better techniques to obtain reliable source mechanism and assess uncertainties is not limited to nuclear monitoring, but they also provide quantitative information about the characteristics of seismic hazards, local and regional tectonics and in-situ stress fields of the region .
520
$a
This dissertation begins with the analysis of three sparsely recorded events: the 14 September 1988 US-Soviet Joint Verification Experiment (JVE) nuclear test at the Semipalatinsk test site in Eastern Kazakhstan, and two nuclear explosions at the Chinese Lop Nor test site. We utilize a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long period waveforms and first motion observations provides unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram.
520
$a
We examine the effects of the free surface on the moment tensor via synthetic testing, and apply the moment tensor based discrimination method to well-recorded chemical explosions. These shallow chemical explosions represent rather severe source-station geometry in terms of the vanishing traction issues. We show that the combined waveform and first motion method enables the unique discrimination of these events, even though the data include unmodeled single force components resulting from the collapse and blowout of the quarry face immediately following the initial explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.
520
$a
The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component.
520
$a
The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve the fit to the data. When we apply the 3D model to real data, at long periods (20-50 seconds), we see good agreement in the solutions between the 1D and 3D models and slight improvement in waveform fits when using the 3D velocity model Green's functions. (Abstract shortened by ProQuest.).
590
$a
School code: 0028.
650
4
$a
Geophysics.
$3
535228
690
$a
0373
710
2
$a
University of California, Berkeley.
$b
Earth & Planetary Science.
$3
1035733
773
0
$t
Dissertation Abstracts International
$g
77-08B(E).
790
$a
0028
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10086059
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9310061
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入