語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Local cooling despite global warming.
~
Girihagama, Lakshika Nilmini Kumari.
FindBook
Google Book
Amazon
博客來
Local cooling despite global warming.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Local cooling despite global warming./
作者:
Girihagama, Lakshika Nilmini Kumari.
面頁冊數:
93 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-06(E), Section: B.
Contained By:
Dissertation Abstracts International77-06B(E).
標題:
Physical oceanography. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10000641
ISBN:
9781339410678
Local cooling despite global warming.
Girihagama, Lakshika Nilmini Kumari.
Local cooling despite global warming.
- 93 p.
Source: Dissertation Abstracts International, Volume: 77-06(E), Section: B.
Thesis (Ph.D.)--The Florida State University, 2015.
How much warmer is the ocean surface than the atmosphere directly above it? Part 1 of the present study offers a means to quantify this temperature difference using a nonlinear one-dimensional global energy balance coupled ocean--atmosphere model ("Aqua Planet"). The significance of our model, which is of intermediate complexity, is its ability to obtain an analytical solution for the global average temperatures. Preliminary results show that, for the present climate, global mean ocean temperature is 291.1 K whereas surface atmospheric temperature is 287.4 K. Thus, the surface ocean is 3.7 K warmer than the atmosphere above it. Temporal perturbation of the global mean solution obtained for "Aqua Planet" showed a stable system. Oscillation amplitude of the atmospheric temperature anomaly is greater in magnitude to those found in the ocean. There is a phase shift (a lag in the ocean), which is caused by oceanic thermal inertia. Climate feedbacks due to selected climate parameters such as incoming radiation, cloud cover, and CO2 are discussed. Warming obtained with our model compares with Intergovernmental Panel on Climate Change's (IPCC) estimations. Application of our model to local regions illuminates the importance of evaporative cooling in determining derived air-sea temperature offsets, where an increase in the latter increases the systems overall sensitivity to evaporative cooling. In part 2, we wish to answer the fairly complicated question of whether global warming and an increased freshwater flux cause Northern Hemispheric warming or cooling. Starting from the assumption of the ocean as the primary source of variability in the Northern hemispheric ocean--atmosphere coupled system, we employed a simple non--linear one--dimensional coupled ocean--atmosphere model similar to the "Aqua Planet" model but with additional advective heat transports. The simplicity of this model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean--atmosphere heat fluxes. Model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep--water formation region. Cooling in both the ocean and atmosphere can cause a reduction of the ocean--atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.14 Sv. Assuming a constant atmospheric zonal flow, there is both minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.
ISBN: 9781339410678Subjects--Topical Terms:
3168433
Physical oceanography.
Local cooling despite global warming.
LDR
:03957nmm a2200289 4500
001
2077079
005
20161114130219.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781339410678
035
$a
(MiAaPQ)AAI10000641
035
$a
AAI10000641
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Girihagama, Lakshika Nilmini Kumari.
$3
3192565
245
1 0
$a
Local cooling despite global warming.
300
$a
93 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-06(E), Section: B.
500
$a
Adviser: Doron Nof.
502
$a
Thesis (Ph.D.)--The Florida State University, 2015.
520
$a
How much warmer is the ocean surface than the atmosphere directly above it? Part 1 of the present study offers a means to quantify this temperature difference using a nonlinear one-dimensional global energy balance coupled ocean--atmosphere model ("Aqua Planet"). The significance of our model, which is of intermediate complexity, is its ability to obtain an analytical solution for the global average temperatures. Preliminary results show that, for the present climate, global mean ocean temperature is 291.1 K whereas surface atmospheric temperature is 287.4 K. Thus, the surface ocean is 3.7 K warmer than the atmosphere above it. Temporal perturbation of the global mean solution obtained for "Aqua Planet" showed a stable system. Oscillation amplitude of the atmospheric temperature anomaly is greater in magnitude to those found in the ocean. There is a phase shift (a lag in the ocean), which is caused by oceanic thermal inertia. Climate feedbacks due to selected climate parameters such as incoming radiation, cloud cover, and CO2 are discussed. Warming obtained with our model compares with Intergovernmental Panel on Climate Change's (IPCC) estimations. Application of our model to local regions illuminates the importance of evaporative cooling in determining derived air-sea temperature offsets, where an increase in the latter increases the systems overall sensitivity to evaporative cooling. In part 2, we wish to answer the fairly complicated question of whether global warming and an increased freshwater flux cause Northern Hemispheric warming or cooling. Starting from the assumption of the ocean as the primary source of variability in the Northern hemispheric ocean--atmosphere coupled system, we employed a simple non--linear one--dimensional coupled ocean--atmosphere model similar to the "Aqua Planet" model but with additional advective heat transports. The simplicity of this model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean--atmosphere heat fluxes. Model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep--water formation region. Cooling in both the ocean and atmosphere can cause a reduction of the ocean--atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.14 Sv. Assuming a constant atmospheric zonal flow, there is both minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.
590
$a
School code: 0071.
650
4
$a
Physical oceanography.
$3
3168433
650
4
$a
Geophysics.
$3
535228
650
4
$a
Atmospheric sciences.
$3
3168354
690
$a
0415
690
$a
0373
690
$a
0725
710
2
$a
The Florida State University.
$b
Geophysical Fluid Dynamics.
$3
3192566
773
0
$t
Dissertation Abstracts International
$g
77-06B(E).
790
$a
0071
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10000641
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9309947
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入