Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The ecotoxicological impacts of copp...
~
Lahman, Sara E.
Linked to FindBook
Google Book
Amazon
博客來
The ecotoxicological impacts of copper in aquatic systems.
Record Type:
Electronic resources : Monograph/item
Title/Author:
The ecotoxicological impacts of copper in aquatic systems./
Author:
Lahman, Sara E.
Description:
117 p.
Notes:
Source: Dissertation Abstracts International, Volume: 76-08(E), Section: B.
Contained By:
Dissertation Abstracts International76-08B(E).
Subject:
Aquatic sciences. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3688323
ISBN:
9781321667547
The ecotoxicological impacts of copper in aquatic systems.
Lahman, Sara E.
The ecotoxicological impacts of copper in aquatic systems.
- 117 p.
Source: Dissertation Abstracts International, Volume: 76-08(E), Section: B.
Thesis (Ph.D.)--Bowling Green State University, 2015.
This dissertation examines the ecotoxicological impacts of heavy metal pollution within an aquatic ecosystem. First, the influence of point versus nonpoint sources in structuring the distribution of chemicals in a simulated flowing freshwater habitat was examined. The fine scale (molecular) spatio-temporal distribution of chemicals was measured in situ using an electrochemical detector. Molecular concentration at varying distance and height from the source was quantified using dopamine coupled with an electrochemical detection system. The fine-scale distribution of chemical plumes from point and nonpoint sources showed significant differences in how organisms will be exposed to chemicals. Overall, this study characterized plumes from nonpoint sources as having significantly longer peak lengths and rise times, as well as greater peak heights and maximum slopes than plumes from point sources, providing a significantly different exposure paradigm depending on introduction method. Next, the effects of sublethal copper toxicity on chemically mediated behavior were determined by exposing rusty crayfish (Orconectes rusticus) to ecologically relevant concentrations of copper (4.5, 45, and 450 mug/l) for 120 hours. Following exposure, crayfish were allowed to orient toward a food odor stimulus. During orientation trials, select crayfish oriented under a point or nonpoint source copper background pollutant at the same concentration as the exposure period. Significant differences were found in the overall orientation ability of O. rusticus to locate an odor source when previously exposed to copper in combination with a source of pollution in the background of orientation trials. Crayfish exposed to copper in any capacity during the experiment (regardless of concentration or background during trials) showed slower walking speeds toward the source, decreased turning angles, increased heading angles toward the source, and decreased upstream heading angles. Results from this experiment support that copper impairs the ability of crayfish to detect, process, and/or respond appropriately to chemosensory information in order to successfully localize a food odor source. Finally, impairment to a behavioral mechanism (antennular flicking) involved in chemically mediated behaviors (orientation to an odor source) of O. rusticus was investigated following 120 hours of sublethal copper exposure (450 mug/l). In second portion of this experiment, crayfish previously exposed to copper were subsequently placed in unpolluted water before behavioral assays. Crayfish exposed to copper were significantly less successful in their ability to orient to a food odor and exhibited lower flicking rates than control crayfish. Over the course of the recovery period, crayfish demonstrated significant increases in rates of successful localization of odors and antennular flicking. These results indicate that the mechanism by which copper impairs chemoreception in the rusty crayfish is reversible if copper concentrations are decreased in aquatic ecosystems. Overall, results from this dissertation demonstrated that although differing exposures were created pollution entering the water column from point and nonpoint sources, ecologically relevant levels of copper significantly impaired the performance of a chemically mediated behavior in the rusty crayfish. Results also demonstrated that impairment to this behavior was correlated to a decrease in olfactory sampling rate, which was further revealed to be a reversible impairment.
ISBN: 9781321667547Subjects--Topical Terms:
3174300
Aquatic sciences.
The ecotoxicological impacts of copper in aquatic systems.
LDR
:04468nmm a2200313 4500
001
2074791
005
20161020134844.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781321667547
035
$a
(MiAaPQ)AAI3688323
035
$a
AAI3688323
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Lahman, Sara E.
$3
3190140
245
1 4
$a
The ecotoxicological impacts of copper in aquatic systems.
300
$a
117 p.
500
$a
Source: Dissertation Abstracts International, Volume: 76-08(E), Section: B.
500
$a
Adviser: Paul A. Moore.
502
$a
Thesis (Ph.D.)--Bowling Green State University, 2015.
520
$a
This dissertation examines the ecotoxicological impacts of heavy metal pollution within an aquatic ecosystem. First, the influence of point versus nonpoint sources in structuring the distribution of chemicals in a simulated flowing freshwater habitat was examined. The fine scale (molecular) spatio-temporal distribution of chemicals was measured in situ using an electrochemical detector. Molecular concentration at varying distance and height from the source was quantified using dopamine coupled with an electrochemical detection system. The fine-scale distribution of chemical plumes from point and nonpoint sources showed significant differences in how organisms will be exposed to chemicals. Overall, this study characterized plumes from nonpoint sources as having significantly longer peak lengths and rise times, as well as greater peak heights and maximum slopes than plumes from point sources, providing a significantly different exposure paradigm depending on introduction method. Next, the effects of sublethal copper toxicity on chemically mediated behavior were determined by exposing rusty crayfish (Orconectes rusticus) to ecologically relevant concentrations of copper (4.5, 45, and 450 mug/l) for 120 hours. Following exposure, crayfish were allowed to orient toward a food odor stimulus. During orientation trials, select crayfish oriented under a point or nonpoint source copper background pollutant at the same concentration as the exposure period. Significant differences were found in the overall orientation ability of O. rusticus to locate an odor source when previously exposed to copper in combination with a source of pollution in the background of orientation trials. Crayfish exposed to copper in any capacity during the experiment (regardless of concentration or background during trials) showed slower walking speeds toward the source, decreased turning angles, increased heading angles toward the source, and decreased upstream heading angles. Results from this experiment support that copper impairs the ability of crayfish to detect, process, and/or respond appropriately to chemosensory information in order to successfully localize a food odor source. Finally, impairment to a behavioral mechanism (antennular flicking) involved in chemically mediated behaviors (orientation to an odor source) of O. rusticus was investigated following 120 hours of sublethal copper exposure (450 mug/l). In second portion of this experiment, crayfish previously exposed to copper were subsequently placed in unpolluted water before behavioral assays. Crayfish exposed to copper were significantly less successful in their ability to orient to a food odor and exhibited lower flicking rates than control crayfish. Over the course of the recovery period, crayfish demonstrated significant increases in rates of successful localization of odors and antennular flicking. These results indicate that the mechanism by which copper impairs chemoreception in the rusty crayfish is reversible if copper concentrations are decreased in aquatic ecosystems. Overall, results from this dissertation demonstrated that although differing exposures were created pollution entering the water column from point and nonpoint sources, ecologically relevant levels of copper significantly impaired the performance of a chemically mediated behavior in the rusty crayfish. Results also demonstrated that impairment to this behavior was correlated to a decrease in olfactory sampling rate, which was further revealed to be a reversible impairment.
590
$a
School code: 0018.
650
4
$a
Aquatic sciences.
$3
3174300
650
4
$a
Environmental science.
$3
677245
650
4
$a
Toxicology.
$3
556884
650
4
$a
Ecology.
$3
516476
650
4
$a
Biology.
$3
522710
690
$a
0792
690
$a
0768
690
$a
0383
690
$a
0329
690
$a
0306
710
2
$a
Bowling Green State University.
$b
Biological Sciences.
$3
3190089
773
0
$t
Dissertation Abstracts International
$g
76-08B(E).
790
$a
0018
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3688323
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9307659
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login