語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Predicting Music Revenue: A hierarch...
~
Whitworth, Alex Phillip.
FindBook
Google Book
Amazon
博客來
Predicting Music Revenue: A hierarchical linear modeling approach with sensitivity analyses.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Predicting Music Revenue: A hierarchical linear modeling approach with sensitivity analyses./
作者:
Whitworth, Alex Phillip.
面頁冊數:
83 p.
附註:
Source: Masters Abstracts International, Volume: 54-05.
Contained By:
Masters Abstracts International54-05(E).
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1590334
ISBN:
9781321795325
Predicting Music Revenue: A hierarchical linear modeling approach with sensitivity analyses.
Whitworth, Alex Phillip.
Predicting Music Revenue: A hierarchical linear modeling approach with sensitivity analyses.
- 83 p.
Source: Masters Abstracts International, Volume: 54-05.
Thesis (M.S.)--University of California, Los Angeles, 2015.
The music industry has undergone enormous change since the introduction of of Napster in 1999. In 1999, 100% of industry revenue was from physical sales; in 2014, United States music industry revenue was 32% physical, 37% digital downloads, 27% streaming, and 4\% other minor categories. In this thesis, I present the first models in the music industry that predict monthly revenue at the album level across both revenue stream and geography within the music industry, which are based on a hierarhical linear modeling framework. In addition to the predictive models, I present several sensitivity analyses to examine interesting properties of the data. Specifically, the sensitivity analyses address the effects of data missingness, design imbalance, and the impact of outliers on the predictive results.
ISBN: 9781321795325Subjects--Topical Terms:
517247
Statistics.
Predicting Music Revenue: A hierarchical linear modeling approach with sensitivity analyses.
LDR
:01697nmm a2200289 4500
001
2071109
005
20160627142443.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781321795325
035
$a
(MiAaPQ)AAI1590334
035
$a
AAI1590334
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Whitworth, Alex Phillip.
$3
3186215
245
1 0
$a
Predicting Music Revenue: A hierarchical linear modeling approach with sensitivity analyses.
300
$a
83 p.
500
$a
Source: Masters Abstracts International, Volume: 54-05.
500
$a
Adviser: Ying Nian Wu.
502
$a
Thesis (M.S.)--University of California, Los Angeles, 2015.
520
$a
The music industry has undergone enormous change since the introduction of of Napster in 1999. In 1999, 100% of industry revenue was from physical sales; in 2014, United States music industry revenue was 32% physical, 37% digital downloads, 27% streaming, and 4\% other minor categories. In this thesis, I present the first models in the music industry that predict monthly revenue at the album level across both revenue stream and geography within the music industry, which are based on a hierarhical linear modeling framework. In addition to the predictive models, I present several sensitivity analyses to examine interesting properties of the data. Specifically, the sensitivity analyses address the effects of data missingness, design imbalance, and the impact of outliers on the predictive results.
590
$a
School code: 0031.
650
4
$a
Statistics.
$3
517247
650
4
$a
Arts management.
$3
3168382
650
4
$a
Music.
$3
516178
690
$a
0463
690
$a
0424
690
$a
0413
710
2
$a
University of California, Los Angeles.
$b
Statistics 0891.
$3
2095317
773
0
$t
Masters Abstracts International
$g
54-05(E).
790
$a
0031
791
$a
M.S.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1590334
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9303977
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入