語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Probabilistic models for phylogeneti...
~
Blondin, James.
FindBook
Google Book
Amazon
博客來
Probabilistic models for phylogenetic classification of Mycobacterium tuberculosis complex genotyping data.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Probabilistic models for phylogenetic classification of Mycobacterium tuberculosis complex genotyping data./
作者:
Blondin, James.
面頁冊數:
81 p.
附註:
Source: Masters Abstracts International, Volume: 52-01.
Contained By:
Masters Abstracts International52-01(E).
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1540431
ISBN:
9781303185533
Probabilistic models for phylogenetic classification of Mycobacterium tuberculosis complex genotyping data.
Blondin, James.
Probabilistic models for phylogenetic classification of Mycobacterium tuberculosis complex genotyping data.
- 81 p.
Source: Masters Abstracts International, Volume: 52-01.
Thesis (M.S.)--Rensselaer Polytechnic Institute, 2013.
This thesis presents a semi-supervised hierarchical Bayesian network to classify strains of Mycobacterium Tuberculosis complex (MTBC) into a three-tier set of genetic lineages and sublineages. MTBC is the causative agent of the infectious disease Tuberculosis (TB), which resulted in over 1.4 million deaths in 2011. Two main types of DNA fingerprinting techniques---spacer oligonucleotide typing (spoligotyping) and mycobacterial interspersed repetitive units (MIRUs)---are regularly used by public health officials and TB researchers to track and control TB.
ISBN: 9781303185533Subjects--Topical Terms:
523869
Computer science.
Probabilistic models for phylogenetic classification of Mycobacterium tuberculosis complex genotyping data.
LDR
:02481nmm a2200301 4500
001
2069805
005
20160524150701.5
008
170521s2013 ||||||||||||||||| ||eng d
020
$a
9781303185533
035
$a
(MiAaPQ)AAI1540431
035
$a
AAI1540431
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Blondin, James.
$3
3184816
245
1 0
$a
Probabilistic models for phylogenetic classification of Mycobacterium tuberculosis complex genotyping data.
300
$a
81 p.
500
$a
Source: Masters Abstracts International, Volume: 52-01.
500
$a
Adviser: Kristin P. Bennett.
502
$a
Thesis (M.S.)--Rensselaer Polytechnic Institute, 2013.
520
$a
This thesis presents a semi-supervised hierarchical Bayesian network to classify strains of Mycobacterium Tuberculosis complex (MTBC) into a three-tier set of genetic lineages and sublineages. MTBC is the causative agent of the infectious disease Tuberculosis (TB), which resulted in over 1.4 million deaths in 2011. Two main types of DNA fingerprinting techniques---spacer oligonucleotide typing (spoligotyping) and mycobacterial interspersed repetitive units (MIRUs)---are regularly used by public health officials and TB researchers to track and control TB.
520
$a
The model and algorithms presented in this thesis use spoligotype and MIRU data combined from multiple heterogeneous data sources labeled by different experts to provide a model that is able to classify MTBC isolates into a hierarchical phylogenetic structure. The model is trained on over 117064 isolate DNA fingerprints collected by the United States Centers for Disease Control and Prevention, the SITVITWEB database at Institut Pasteur de Guadeloupe, and the MIRU-VNTR plus collection of MTBC strains. The model achieves high classification accuracy, confirming many well-established lineages at all hierarchy levels, and provides visualizations of spoligotype and MIRU signatures for each lineage. In addition, the model discovers some inconsistencies in MTBC labels between data sources, and suggests possible resolutions of these inconsistencies. After further study and refinement, this approach will form the basis for a new tool for MTBC lineage identification freely available online.
590
$a
School code: 0185.
650
4
$a
Computer science.
$3
523869
650
4
$a
Applied mathematics.
$3
2122814
650
4
$a
Epidemiology.
$3
568544
690
$a
0984
690
$a
0364
690
$a
0766
710
2
$a
Rensselaer Polytechnic Institute.
$b
Computer Science.
$3
2094828
773
0
$t
Masters Abstracts International
$g
52-01(E).
790
$a
0185
791
$a
M.S.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1540431
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9302673
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入