語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
New neural network for real-time hum...
~
Bataineh, Mohammad Hindi.
FindBook
Google Book
Amazon
博客來
New neural network for real-time human dynamic motion prediction.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
New neural network for real-time human dynamic motion prediction./
作者:
Bataineh, Mohammad Hindi.
面頁冊數:
253 p.
附註:
Source: Dissertation Abstracts International, Volume: 76-11(E), Section: B.
Contained By:
Dissertation Abstracts International76-11B(E).
標題:
Artificial intelligence. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3711174
ISBN:
9781321872606
New neural network for real-time human dynamic motion prediction.
Bataineh, Mohammad Hindi.
New neural network for real-time human dynamic motion prediction.
- 253 p.
Source: Dissertation Abstracts International, Volume: 76-11(E), Section: B.
Thesis (Ph.D.)--The University of Iowa, 2015.
Artificial neural networks (ANNs) have been used successfully in various practical problems. Though extensive improvements on different types of ANNs have been made to improve their performance, each ANN design still experiences its own limitations. The existing digital human models are mature enough to provide accurate and useful results for different tasks and scenarios under various conditions. There is, however, a critical need for these models to run in real time, especially those with large-scale problems like motion prediction which can be computationally demanding. For even small changes to the task conditions, the motion simulation needs to run for a relatively long time (minutes to tens of minutes). Thus, there can be a limited number of training cases due to the computational time and cost associated with collecting training data. In addition, the motion problem is relatively large with respect to the number of outputs, where there are hundreds of outputs (between 500-700 outputs) to predict for a single problem. Therefore, the aforementioned necessities in motion problems lead to the use of tools like the ANN in this work.
ISBN: 9781321872606Subjects--Topical Terms:
516317
Artificial intelligence.
New neural network for real-time human dynamic motion prediction.
LDR
:04715nmm a2200325 4500
001
2069493
005
20160513093957.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781321872606
035
$a
(MiAaPQ)AAI3711174
035
$a
AAI3711174
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Bataineh, Mohammad Hindi.
$3
3184512
245
1 0
$a
New neural network for real-time human dynamic motion prediction.
300
$a
253 p.
500
$a
Source: Dissertation Abstracts International, Volume: 76-11(E), Section: B.
500
$a
Advisers: Karim Abdel-Malek; Timothy Marler.
502
$a
Thesis (Ph.D.)--The University of Iowa, 2015.
520
$a
Artificial neural networks (ANNs) have been used successfully in various practical problems. Though extensive improvements on different types of ANNs have been made to improve their performance, each ANN design still experiences its own limitations. The existing digital human models are mature enough to provide accurate and useful results for different tasks and scenarios under various conditions. There is, however, a critical need for these models to run in real time, especially those with large-scale problems like motion prediction which can be computationally demanding. For even small changes to the task conditions, the motion simulation needs to run for a relatively long time (minutes to tens of minutes). Thus, there can be a limited number of training cases due to the computational time and cost associated with collecting training data. In addition, the motion problem is relatively large with respect to the number of outputs, where there are hundreds of outputs (between 500-700 outputs) to predict for a single problem. Therefore, the aforementioned necessities in motion problems lead to the use of tools like the ANN in this work.
520
$a
This work introduces new algorithms for the design of the radial-basis network (RBN) for problems with minimal available training data. The new RBN design incorporates new training stages with approaches to facilitate proper setting of necessary network parameters. The use of training algorithms with minimal heuristics allows the new RBN design to produce results with quality that none of the competing methods have achieved. The new RBN design, called Opt_RBN, is tested on experimental and practical problems, and the results outperform those produced from standard regression and ANN models. In general, the Opt_RBN shows stable and robust performance for a given set of training cases.
520
$a
When the Opt_RBN is applied on the large-scale motion prediction application, the network experiences a CPU memory issue when performing the optimization step in the training process. Therefore, new algorithms are introduced to modify some steps of the new Opt_RBN training process to address the memory issue. The modified steps should only be used for large-scale applications similar to the motion problem. The new RBN design proposes an ANN that is capable of improved learning without needing more training data. Although the new design is driven by its use with motion prediction problems, the consequent ANN design can be used with a broad range of large-scale problems in various engineering and industrial fields that experience delay issues when running computational tools that require a massive number of procedures and a great deal of CPU memory.
520
$a
The results of evaluating the modified Opt_RBN design on two motion problems are promising, with relatively small errors obtained when predicting approximately 500-700 outputs. In addition, new methods for constraint implementation within the new RBN design are introduced. Moreover, the new RBN design and its associated parameters are used as a tool for simulated task analysis. This work initiates the idea that output weights (W) can be used to determine the most critical basis functions that cause the greatest reduction in the network test error. Then, the critical basis functions can specify the most significant training cases that are responsible for the proper performance achieved by the network. The inputs with the most change in value can be extracted from the basis function centers (U) in order to determine the dominant inputs. The outputs with the most change in value and their corresponding key body degrees-of-freedom for a motion task can also be specified using the training cases that are used to create the network's basis functions.
590
$a
School code: 0096.
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Biomechanics.
$3
548685
650
4
$a
Mechanical engineering.
$3
649730
690
$a
0800
690
$a
0648
690
$a
0548
710
2
$a
The University of Iowa.
$b
Biomedical Engineering.
$3
1679996
773
0
$t
Dissertation Abstracts International
$g
76-11B(E).
790
$a
0096
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3711174
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9302361
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入