語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
High Sensitivity Detection of Broadb...
~
Zhang, Zhen.
FindBook
Google Book
Amazon
博客來
High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method./
作者:
Zhang, Zhen.
面頁冊數:
123 p.
附註:
Source: Dissertation Abstracts International, Volume: 76-10(E), Section: B.
Contained By:
Dissertation Abstracts International76-10B(E).
標題:
Optics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3705407
ISBN:
9781321783476
High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method.
Zhang, Zhen.
High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method.
- 123 p.
Source: Dissertation Abstracts International, Volume: 76-10(E), Section: B.
Thesis (Ph.D.)--Northwestern University, 2015.
Measuring the high frequency acoustic vibrations represents the fundamental interest in revealing the intrinsic dynamic characteristic of board range of systems, such as the growth of the fetus, blood flow in human palms, and vibrations of carbon nanotube. However, the acoustic wave detection capability is limited by the detection bandwidth and sensitivity of the commonly used piezoelectric based ultrasound detectors. To overcome these limitations, this thesis focuses on exploring the optical demodulation method for highly sensitive detection of broadband acoustic vibration. First, a transparent optical ultrasonic detector has been developed using micro-ring resonator (MRR) made of soft polymeric materials. It outperforms the traditional piezoelectric detectors with broader detection bandwidth, miniaturized size and wide angular sensitivity. Its ease of integration into photoacoustic microscopy system has resulted in the great improvement of the imaging resolution. A theoretic framework has been developed to establish the quantitative understanding of its unique distance and angular dependent detection characteristics and was subsequently validated experimentally. The developed theoretic framework provides a guideline to fully accounts for the trade-offs between axial and lateral resolution, working distance, and the field of view in developing optimal imaging performance for a wide range of biological and clinical applications. MRR-based ultrasonic detector is further integrated into confocal fluorescence microscopy to realize the simultaneous imaging of fluorescence and optical absorption of retinal pigment epithelium, achieving multi-contrast imaging at sub-cellular level. The needs to resolve the fine details of the biological specimen with the resolution beyond the diffraction limit further motivate the development of optical demodulated ultrasonic detection method based on near-field scanning optical microscopy (NSOM). The nano-focusing probe was developed for adiabatic focusing of surface plasmon polaritons to the probe apex with high energy efficiency and the suppression of the background noise was accomplished through the implementation of the harmonic demodulation technique. Collectively, this system is capable of delivering intense near-field illumination source while effectively suppressing the background signal due to the far-field scattering and thus, allows for quantitative mapping of local evanescent field with enhanced contrast and improved resolutions. The performance of the developed NSOM system has been validated through the experimental measurements of the surface plasmon polariton mode. This new NSOM system enables optical demodulated ultrasound detection at nanoscale spatial resolution. Using it to detect the ultrasound signal within the acoustic near-field has led to the successful experimental demonstration of the sub-surface photoacoustic imaging of buried objects with sub-diffraction-limited resolution and high sensitivity. Such a new ultrasound detection method holds promising potential for super-resolution ultrasound imaging.
ISBN: 9781321783476Subjects--Topical Terms:
517925
Optics.
High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method.
LDR
:04016nmm a2200289 4500
001
2066787
005
20160204121820.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781321783476
035
$a
(MiAaPQ)AAI3705407
035
$a
AAI3705407
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Zhen.
$3
1271900
245
1 0
$a
High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method.
300
$a
123 p.
500
$a
Source: Dissertation Abstracts International, Volume: 76-10(E), Section: B.
500
$a
Adviser: Cheng Sun.
502
$a
Thesis (Ph.D.)--Northwestern University, 2015.
520
$a
Measuring the high frequency acoustic vibrations represents the fundamental interest in revealing the intrinsic dynamic characteristic of board range of systems, such as the growth of the fetus, blood flow in human palms, and vibrations of carbon nanotube. However, the acoustic wave detection capability is limited by the detection bandwidth and sensitivity of the commonly used piezoelectric based ultrasound detectors. To overcome these limitations, this thesis focuses on exploring the optical demodulation method for highly sensitive detection of broadband acoustic vibration. First, a transparent optical ultrasonic detector has been developed using micro-ring resonator (MRR) made of soft polymeric materials. It outperforms the traditional piezoelectric detectors with broader detection bandwidth, miniaturized size and wide angular sensitivity. Its ease of integration into photoacoustic microscopy system has resulted in the great improvement of the imaging resolution. A theoretic framework has been developed to establish the quantitative understanding of its unique distance and angular dependent detection characteristics and was subsequently validated experimentally. The developed theoretic framework provides a guideline to fully accounts for the trade-offs between axial and lateral resolution, working distance, and the field of view in developing optimal imaging performance for a wide range of biological and clinical applications. MRR-based ultrasonic detector is further integrated into confocal fluorescence microscopy to realize the simultaneous imaging of fluorescence and optical absorption of retinal pigment epithelium, achieving multi-contrast imaging at sub-cellular level. The needs to resolve the fine details of the biological specimen with the resolution beyond the diffraction limit further motivate the development of optical demodulated ultrasonic detection method based on near-field scanning optical microscopy (NSOM). The nano-focusing probe was developed for adiabatic focusing of surface plasmon polaritons to the probe apex with high energy efficiency and the suppression of the background noise was accomplished through the implementation of the harmonic demodulation technique. Collectively, this system is capable of delivering intense near-field illumination source while effectively suppressing the background signal due to the far-field scattering and thus, allows for quantitative mapping of local evanescent field with enhanced contrast and improved resolutions. The performance of the developed NSOM system has been validated through the experimental measurements of the surface plasmon polariton mode. This new NSOM system enables optical demodulated ultrasound detection at nanoscale spatial resolution. Using it to detect the ultrasound signal within the acoustic near-field has led to the successful experimental demonstration of the sub-surface photoacoustic imaging of buried objects with sub-diffraction-limited resolution and high sensitivity. Such a new ultrasound detection method holds promising potential for super-resolution ultrasound imaging.
590
$a
School code: 0163.
650
4
$a
Optics.
$3
517925
650
4
$a
Acoustics.
$3
879105
650
4
$a
Mechanical engineering.
$3
649730
690
$a
0752
690
$a
0986
690
$a
0548
710
2
$a
Northwestern University.
$b
Mechanical Engineering.
$3
1018403
773
0
$t
Dissertation Abstracts International
$g
76-10B(E).
790
$a
0163
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3705407
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9299655
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入