語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational Modeling in Three Dime...
~
Jiang, Yichen.
FindBook
Google Book
Amazon
博客來
Computational Modeling in Three Dimensions of Multi-DOF Ship Motion in a Viscous Fluid.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Computational Modeling in Three Dimensions of Multi-DOF Ship Motion in a Viscous Fluid./
作者:
Jiang, Yichen.
面頁冊數:
123 p.
附註:
Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.
Contained By:
Dissertation Abstracts International76-02B(E).
標題:
Ocean engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3640480
ISBN:
9781321259421
Computational Modeling in Three Dimensions of Multi-DOF Ship Motion in a Viscous Fluid.
Jiang, Yichen.
Computational Modeling in Three Dimensions of Multi-DOF Ship Motion in a Viscous Fluid.
- 123 p.
Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 2014.
This item must not be sold to any third party vendors.
The prediction of roll motion of a ship with bilge keels is particularly difficult because of the nonlinear characteristics of viscous damping. Flow separation and vortex shedding caused by bilge keels significantly affect the roll damping and the magnitude of the roll response. To predict roll damping and motion of a ship, the Slender-Ship Free-Surface Random Vortex Method (SSFSRVM) was employed. It is a free-surface viscous-flow solver with low computational cost so that it can run on a standard desktop computer. It features a quasi-three dimensional formulation that allows the decomposition of the three-dimensional hull problem into a sequence of two-dimensional computational planes, in which the two-dimensional free-surface Navier-Stokes solver FSRVM can be applied. In this work, the SSFSRVM methodology has been further developed to model multi-degrees of freedom of free-body motion in the time domain. This version of SSFSRVM model does not require the assumption of small amplitude motion, and is capable of having viscosity turned on or off in the solution procedure. Because FSRVM uses a grid-free formulation, there is no issue with numerical viscosity.
ISBN: 9781321259421Subjects--Topical Terms:
660731
Ocean engineering.
Computational Modeling in Three Dimensions of Multi-DOF Ship Motion in a Viscous Fluid.
LDR
:03943nmm a2200325 4500
001
2061585
005
20151006081833.5
008
170521s2014 ||||||||||||||||| ||eng d
020
$a
9781321259421
035
$a
(MiAaPQ)AAI3640480
035
$a
AAI3640480
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Jiang, Yichen.
$3
3175873
245
1 0
$a
Computational Modeling in Three Dimensions of Multi-DOF Ship Motion in a Viscous Fluid.
300
$a
123 p.
500
$a
Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.
500
$a
Adviser: Ronald W. Yeung.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 2014.
506
$a
This item must not be sold to any third party vendors.
506
$a
This item must not be added to any third party search indexes.
520
$a
The prediction of roll motion of a ship with bilge keels is particularly difficult because of the nonlinear characteristics of viscous damping. Flow separation and vortex shedding caused by bilge keels significantly affect the roll damping and the magnitude of the roll response. To predict roll damping and motion of a ship, the Slender-Ship Free-Surface Random Vortex Method (SSFSRVM) was employed. It is a free-surface viscous-flow solver with low computational cost so that it can run on a standard desktop computer. It features a quasi-three dimensional formulation that allows the decomposition of the three-dimensional hull problem into a sequence of two-dimensional computational planes, in which the two-dimensional free-surface Navier-Stokes solver FSRVM can be applied. In this work, the SSFSRVM methodology has been further developed to model multi-degrees of freedom of free-body motion in the time domain. This version of SSFSRVM model does not require the assumption of small amplitude motion, and is capable of having viscosity turned on or off in the solution procedure. Because FSRVM uses a grid-free formulation, there is no issue with numerical viscosity.
520
$a
We validated the SSFSRVM in simulating the free roll decay motion of a naval vessel without forward speed. The numerically predicted vorticity distributions at different time instants near a bilge keel closely matched experimental PIV images. We found that the SSFSRVM model is capable of predicting the roll motion of a hull, and capturing the behavior of the vortical structures in the fluid. Further, we examined how the roll decay coefficients and the flow field were altered by the span of the bilge keels, based on the time-domain simulation of the coupled hull and fluid motion. Plots of vorticity contours and iso-surfaces along the three-dimensional hull were presented to reveal the motion of fluid particles and vortex filaments near the keels. In addition, the generation of the quadratic roll damping was investigated by showing the bilge-keel hydrodynamic moment and the pressure distribution on the hull surface and bilge keels.
520
$a
Finally, the predicted roll time histories of a naval hull with three different forward speeds were compared with those obtained from experimental measurements. The numerical predictions were in good agreement with the experimental measurements for all three speeds. In addition, the numerical model also successfully produced the divergent waves with the same angles as those measured in the experiment, and accurately predicted the locations of the peaks and troughs of the divergent waves. The motion of the sonar-dome and bilge-keel vortex filaments, as well as their interactions, were presented to investigate the effect of forward speed. Significant influences of forward speed on the roll motion and roll damping were noted and explained.
590
$a
School code: 0028.
650
4
$a
Ocean engineering.
$3
660731
650
4
$a
Naval engineering.
$3
3173824
690
$a
0547
690
$a
0468
710
2
$a
University of California, Berkeley.
$b
Mechanical Engineering.
$3
1043692
773
0
$t
Dissertation Abstracts International
$g
76-02B(E).
790
$a
0028
791
$a
Ph.D.
792
$a
2014
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3640480
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9294243
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入