語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data Mining for Improving Health-Car...
~
He, Nannan.
FindBook
Google Book
Amazon
博客來
Data Mining for Improving Health-Care Resource Deployment.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Data Mining for Improving Health-Care Resource Deployment./
作者:
He, Nannan.
面頁冊數:
59 p.
附註:
Source: Masters Abstracts International, Volume: 52-06.
Contained By:
Masters Abstracts International52-06(E).
標題:
Information Technology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1554229
ISBN:
9781303842337
Data Mining for Improving Health-Care Resource Deployment.
He, Nannan.
Data Mining for Improving Health-Care Resource Deployment.
- 59 p.
Source: Masters Abstracts International, Volume: 52-06.
Thesis (M.S.)--University of California, Santa Cruz, 2014.
Data Mining for Improving Health-Care Resource Deployment Nannan He While the health care industry accounts for a significant large portion of the GDP, the health care system in the US are still relatively inefficient. Before cutting down unnecessary health care expenses, it is important to ensure that individuals who really need medical attention should receive it. For example, if we could predict the hospitalization period (in days) for a potential patient, then we could better predict and distribute health care resources.
ISBN: 9781303842337Subjects--Topical Terms:
1030799
Information Technology.
Data Mining for Improving Health-Care Resource Deployment.
LDR
:02044nmm a2200277 4500
001
2055264
005
20141203121504.5
008
170521s2014 ||||||||||||||||| ||eng d
020
$a
9781303842337
035
$a
(MiAaPQ)AAI1554229
035
$a
AAI1554229
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
He, Nannan.
$3
3168904
245
1 0
$a
Data Mining for Improving Health-Care Resource Deployment.
300
$a
59 p.
500
$a
Source: Masters Abstracts International, Volume: 52-06.
500
$a
Adviser: Subhas Desa.
502
$a
Thesis (M.S.)--University of California, Santa Cruz, 2014.
520
$a
Data Mining for Improving Health-Care Resource Deployment Nannan He While the health care industry accounts for a significant large portion of the GDP, the health care system in the US are still relatively inefficient. Before cutting down unnecessary health care expenses, it is important to ensure that individuals who really need medical attention should receive it. For example, if we could predict the hospitalization period (in days) for a potential patient, then we could better predict and distribute health care resources.
520
$a
In this research, we apply data mining methods and tools to address the problem of predicting future hospitalization periods (in days) for patients from a given set of historical patient data. The data mining techniques that we explored were linear regression, random forest and gradient boosting. For each technique, we used different historical data sets. The combination of data mining techniques and historical datasets enabled us to compare access and choose the combination which provides the best prediction of hospitalization period of a set of patients. Based on the results of our work, the random forest technique provides the best prediction of patient hospitalization.
590
$a
School code: 0036.
650
4
$a
Information Technology.
$3
1030799
690
$a
0489
710
2
$a
University of California, Santa Cruz.
$b
Technology and Information Management.
$3
2097198
773
0
$t
Masters Abstracts International
$g
52-06(E).
790
$a
0036
791
$a
M.S.
792
$a
2014
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1554229
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9287743
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入