語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analyzing time interval data = intro...
~
Meisen, Philipp.
FindBook
Google Book
Amazon
博客來
Analyzing time interval data = introducing an information system for time interval data analysis /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Analyzing time interval data/ by Philipp Meisen.
其他題名:
introducing an information system for time interval data analysis /
作者:
Meisen, Philipp.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden : : 2016.,
面頁冊數:
xxxi, 232 p. :ill., digital ;24 cm.
內容註:
Modeling Time Interval Data -- Querying for Time Interval Data -- Similarity of Time Interval Data -- An Information System for Time Interval Data Analysis.
Contained By:
Springer eBooks
標題:
System analysis - Data processing. -
電子資源:
http://dx.doi.org/10.1007/978-3-658-15728-9
ISBN:
9783658157289$q(electronic bk.)
Analyzing time interval data = introducing an information system for time interval data analysis /
Meisen, Philipp.
Analyzing time interval data
introducing an information system for time interval data analysis /[electronic resource] :by Philipp Meisen. - Wiesbaden :Springer Fachmedien Wiesbaden :2016. - xxxi, 232 p. :ill., digital ;24 cm.
Modeling Time Interval Data -- Querying for Time Interval Data -- Similarity of Time Interval Data -- An Information System for Time Interval Data Analysis.
Philipp Meisen introduces a model, a query language, and a similarity measure enabling users to analyze time interval data. The introduced tools are combined to design and realize an information system. The presented system is capable of performing analytical tasks (avoiding any type of summarizability problems), providing insights, and visualizing results processing millions of intervals within milliseconds using an intuitive SQL-based query language. The heart of the solution is based on several bitmap-based indexes, which enable the system to handle huge amounts of time interval data. Contents Modeling Time Interval Data Querying for Time Interval Data Similarity of Time Interval Data An Information System for Time Interval Data Analysis Target Groups Researchers and students in the field of information management Business analysts and dispatchers in the fields of online analytical processing (OLAP), data warehousing (DW), business intelligence (BI), workforce management, and data science The Author Philipp Meisen holds a doctoral degree from RWTH Aachen, where he was a research group leader at the Chair of Information Management in Mechanical Engineering.
ISBN: 9783658157289$q(electronic bk.)
Standard No.: 10.1007/978-3-658-15728-9doiSubjects--Topical Terms:
813117
System analysis
--Data processing.
LC Class. No.: QA402
Dewey Class. No.: 519.5
Analyzing time interval data = introducing an information system for time interval data analysis /
LDR
:02336nmm a2200325 a 4500
001
2052388
003
DE-He213
005
20160913110619.0
006
m d
007
cr nn 008maaau
008
170421s2016 gw s 0 eng d
020
$a
9783658157289$q(electronic bk.)
020
$a
9783658157272$q(paper)
024
7
$a
10.1007/978-3-658-15728-9
$2
doi
035
$a
978-3-658-15728-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402
072
7
$a
UT
$2
bicssc
072
7
$a
COM069000
$2
bisacsh
072
7
$a
COM032000
$2
bisacsh
082
0 4
$a
519.5
$2
23
090
$a
QA402
$b
.M515 2016
100
1
$a
Meisen, Philipp.
$3
3135654
245
1 0
$a
Analyzing time interval data
$h
[electronic resource] :
$b
introducing an information system for time interval data analysis /
$c
by Philipp Meisen.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2016.
300
$a
xxxi, 232 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Modeling Time Interval Data -- Querying for Time Interval Data -- Similarity of Time Interval Data -- An Information System for Time Interval Data Analysis.
520
$a
Philipp Meisen introduces a model, a query language, and a similarity measure enabling users to analyze time interval data. The introduced tools are combined to design and realize an information system. The presented system is capable of performing analytical tasks (avoiding any type of summarizability problems), providing insights, and visualizing results processing millions of intervals within milliseconds using an intuitive SQL-based query language. The heart of the solution is based on several bitmap-based indexes, which enable the system to handle huge amounts of time interval data. Contents Modeling Time Interval Data Querying for Time Interval Data Similarity of Time Interval Data An Information System for Time Interval Data Analysis Target Groups Researchers and students in the field of information management Business analysts and dispatchers in the fields of online analytical processing (OLAP), data warehousing (DW), business intelligence (BI), workforce management, and data science The Author Philipp Meisen holds a doctoral degree from RWTH Aachen, where he was a research group leader at the Chair of Information Management in Mechanical Engineering.
650
0
$a
System analysis
$x
Data processing.
$3
813117
650
0
$a
Time.
$3
524064
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Information Systems and Communication Service.
$3
891044
650
2 4
$a
Data Structures, Cryptology and Information Theory.
$3
891008
650
2 4
$a
Software Engineering/Programming and Operating Systems.
$3
891214
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-15728-9
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9286241
電子資源
11.線上閱覽_V
電子書
EB QA402
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入