語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optical flow and trajectory estimati...
~
Gibson, Joel.
FindBook
Google Book
Amazon
博客來
Optical flow and trajectory estimation methods
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optical flow and trajectory estimation methods/ by Joel Gibson, Oge Marques.
作者:
Gibson, Joel.
其他作者:
Marques, Oge.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
x, 49 p. :ill., digital ;24 cm.
內容註:
Optical Flow Fundamentals -- Optical Flow and Trajectory Methods in Context -- Sparse Regularization of TV-L Optical Flow -- Robust Low Rank Trajectories.
Contained By:
Springer eBooks
標題:
Optical measurements. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-44941-8
ISBN:
9783319449418$q(electronic bk.)
Optical flow and trajectory estimation methods
Gibson, Joel.
Optical flow and trajectory estimation methods
[electronic resource] /by Joel Gibson, Oge Marques. - Cham :Springer International Publishing :2016. - x, 49 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Optical Flow Fundamentals -- Optical Flow and Trajectory Methods in Context -- Sparse Regularization of TV-L Optical Flow -- Robust Low Rank Trajectories.
This brief focuses on two main problems in the domain of optical flow and trajectory estimation: (i) The problem of finding convex optimization methods to apply sparsity to optical flow; and (ii) The problem of how to extend sparsity to improve trajectories in a computationally tractable way. Beginning with a review of optical flow fundamentals, it discusses the commonly used flow estimation strategies and the advantages or shortcomings of each. The brief also introduces the concepts associated with sparsity including dictionaries and low rank matrices. Next, it provides context for optical flow and trajectory methods including algorithms, data sets, and performance measurement. The second half of the brief covers sparse regularization of total variation optical flow and robust low rank trajectories. The authors describe a new approach that uses partially-overlapping patches to accelerate the calculation and is implemented in a coarse-to-fine strategy. Experimental results show that combining total variation and a sparse constraint from a learned dictionary is more effective than employing total variation alone. The brief is targeted at researchers and practitioners in the fields of engineering and computer science. It caters particularly to new researchers looking for cutting edge topics in optical flow as well as veterans of optical flow wishing to learn of the latest advances in multi-frame methods.
ISBN: 9783319449418$q(electronic bk.)
Standard No.: 10.1007/978-3-319-44941-8doiSubjects--Topical Terms:
674201
Optical measurements.
LC Class. No.: QC367
Dewey Class. No.: 681.25
Optical flow and trajectory estimation methods
LDR
:02563nmm a2200325 a 4500
001
2052376
003
DE-He213
005
20160901141242.0
006
m d
007
cr nn 008maaau
008
170421s2016 gw s 0 eng d
020
$a
9783319449418$q(electronic bk.)
020
$a
9783319449401$q(paper)
024
7
$a
10.1007/978-3-319-44941-8
$2
doi
035
$a
978-3-319-44941-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC367
072
7
$a
UYQV
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
082
0 4
$a
681.25
$2
23
090
$a
QC367
$b
.G449 2016
100
1
$a
Gibson, Joel.
$3
3135625
245
1 0
$a
Optical flow and trajectory estimation methods
$h
[electronic resource] /
$c
by Joel Gibson, Oge Marques.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 49 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Optical Flow Fundamentals -- Optical Flow and Trajectory Methods in Context -- Sparse Regularization of TV-L Optical Flow -- Robust Low Rank Trajectories.
520
$a
This brief focuses on two main problems in the domain of optical flow and trajectory estimation: (i) The problem of finding convex optimization methods to apply sparsity to optical flow; and (ii) The problem of how to extend sparsity to improve trajectories in a computationally tractable way. Beginning with a review of optical flow fundamentals, it discusses the commonly used flow estimation strategies and the advantages or shortcomings of each. The brief also introduces the concepts associated with sparsity including dictionaries and low rank matrices. Next, it provides context for optical flow and trajectory methods including algorithms, data sets, and performance measurement. The second half of the brief covers sparse regularization of total variation optical flow and robust low rank trajectories. The authors describe a new approach that uses partially-overlapping patches to accelerate the calculation and is implemented in a coarse-to-fine strategy. Experimental results show that combining total variation and a sparse constraint from a learned dictionary is more effective than employing total variation alone. The brief is targeted at researchers and practitioners in the fields of engineering and computer science. It caters particularly to new researchers looking for cutting edge topics in optical flow as well as veterans of optical flow wishing to learn of the latest advances in multi-frame methods.
650
0
$a
Optical measurements.
$3
674201
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
890871
700
1
$a
Marques, Oge.
$3
2106781
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-44941-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9286229
電子資源
11.線上閱覽_V
電子書
EB QC367
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入