Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Empirical modeling and data analysis...
~
Pardo, Scott A.
Linked to FindBook
Google Book
Amazon
博客來
Empirical modeling and data analysis for engineers and applied scientists
Record Type:
Electronic resources : Monograph/item
Title/Author:
Empirical modeling and data analysis for engineers and applied scientists/ by Scott A. Pardo.
Author:
Pardo, Scott A.
Published:
Cham :Springer International Publishing : : 2016.,
Description:
xv, 247 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Mathematical statistics. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-32768-6
ISBN:
9783319327686
Empirical modeling and data analysis for engineers and applied scientists
Pardo, Scott A.
Empirical modeling and data analysis for engineers and applied scientists
[electronic resource] /by Scott A. Pardo. - Cham :Springer International Publishing :2016. - xv, 247 p. :ill., digital ;24 cm.
This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creating predictive or classification models - predicting nature or classifying individuals, and statistics is often used to prove or disprove phenomena as opposed to aiding in the design of a product or process. In industry however, Chemical Engineers use designed experiments to optimize petroleum extraction; Manufacturing Engineers use experimental data to optimize machine operation; Industrial Engineers might use data to determine the optimal number of operators required in a manual assembly process. This text teaches engineering and applied science students to incorporate empirical investigation into such design processes. Much of the discussion in this book is about models, not whether the models truly represent reality but whether they adequately represent reality with respect to the problems at hand; many ideas focus on how to gather data in the most efficient way possible to construct adequate models. Includes chapters on subjects not often seen together in a single text (e.g., measurement systems, mixture experiments, logistic regression, Taguchi methods, simulation) Techniques and concepts introduced present a wide variety of design situations familiar to engineers and applied scientists and inspire incorporation of experimentation and empirical investigation into the design process. Software is integrally linked to statistical analyses with fully worked examples in each chapter; fully worked using several packages: SAS, R, JMP, Minitab, and MS Excel - also including discussion questions at the end of each chapter. The fundamental learning objective of this textbook is for the reader to understand how experimental data can be used to make design decisions and to be familiar with the most common types of experimental designs and analysis methods.
ISBN: 9783319327686
Standard No.: 10.1007/978-3-319-32768-6doiSubjects--Topical Terms:
516858
Mathematical statistics.
LC Class. No.: QA276
Dewey Class. No.: 519.5
Empirical modeling and data analysis for engineers and applied scientists
LDR
:03761nmm a2200313 a 4500
001
2043705
003
DE-He213
005
20160719151448.0
006
m d
007
cr nn 008maaau
008
170217s2016 gw s 0 eng d
020
$a
9783319327686
$q
(electronic bk.)
020
$a
9783319327679
$q
(paper)
024
7
$a
10.1007/978-3-319-32768-6
$2
doi
035
$a
978-3-319-32768-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276
072
7
$a
PBT
$2
bicssc
072
7
$a
PD
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.5
$2
23
090
$a
QA276
$b
.P226 2016
100
1
$a
Pardo, Scott A.
$3
2203619
245
1 0
$a
Empirical modeling and data analysis for engineers and applied scientists
$h
[electronic resource] /
$c
by Scott A. Pardo.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xv, 247 p. :
$b
ill., digital ;
$c
24 cm.
520
$a
This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creating predictive or classification models - predicting nature or classifying individuals, and statistics is often used to prove or disprove phenomena as opposed to aiding in the design of a product or process. In industry however, Chemical Engineers use designed experiments to optimize petroleum extraction; Manufacturing Engineers use experimental data to optimize machine operation; Industrial Engineers might use data to determine the optimal number of operators required in a manual assembly process. This text teaches engineering and applied science students to incorporate empirical investigation into such design processes. Much of the discussion in this book is about models, not whether the models truly represent reality but whether they adequately represent reality with respect to the problems at hand; many ideas focus on how to gather data in the most efficient way possible to construct adequate models. Includes chapters on subjects not often seen together in a single text (e.g., measurement systems, mixture experiments, logistic regression, Taguchi methods, simulation) Techniques and concepts introduced present a wide variety of design situations familiar to engineers and applied scientists and inspire incorporation of experimentation and empirical investigation into the design process. Software is integrally linked to statistical analyses with fully worked examples in each chapter; fully worked using several packages: SAS, R, JMP, Minitab, and MS Excel - also including discussion questions at the end of each chapter. The fundamental learning objective of this textbook is for the reader to understand how experimental data can be used to make design decisions and to be familiar with the most common types of experimental designs and analysis methods.
650
0
$a
Mathematical statistics.
$3
516858
650
1 4
$a
Statistics.
$3
517247
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
1005896
650
2 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Biomedical Engineering/Biotechnology.
$3
2162071
650
2 4
$a
Biochemical Engineering.
$3
892423
650
2 4
$a
Industrial Chemistry/Chemical Engineering.
$3
890826
650
2 4
$a
Environmental Science and Engineering.
$3
1569104
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-32768-6
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9283157
電子資源
11.線上閱覽_V
電子書
EB QA276 .P226 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login