語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Generalized principal component analysis
~
Vidal, Rene.
FindBook
Google Book
Amazon
博客來
Generalized principal component analysis
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Generalized principal component analysis/ by Rene Vidal, Yi Ma, S. Shankar Sastry.
作者:
Vidal, Rene.
其他作者:
Ma, Yi.
出版者:
New York, NY :Springer New York : : 2016.,
面頁冊數:
xxxii, 566 p. :ill., digital ;24 cm.
內容註:
Preface -- Acknowledgments -- Glossary of Notation -- Introduction -- I Modeling Data with Single Subspace -- Principal Component Analysis -- Robust Principal Component Analysis -- Nonlinear and Nonparametric Extensions -- II Modeling Data with Multiple Subspaces -- Algebraic-Geometric Methods -- Statistical Methods -- Spectral Methods -- Sparse and Low-Rank Methods -- III Applications -- Image Representation -- Image Segmentation -- Motion Segmentation -- Hybrid System Identification -- Final Words -- Appendices -- References -- Index.
Contained By:
Springer eBooks
標題:
Mathematical analysis. -
電子資源:
http://dx.doi.org/10.1007/978-0-387-87811-9
ISBN:
9780387878119
Generalized principal component analysis
Vidal, Rene.
Generalized principal component analysis
[electronic resource] /by Rene Vidal, Yi Ma, S. Shankar Sastry. - New York, NY :Springer New York :2016. - xxxii, 566 p. :ill., digital ;24 cm. - Interdisciplinary applied mathematics,v.400939-6047 ;. - Interdisciplinary applied mathematics ;v. 21..
Preface -- Acknowledgments -- Glossary of Notation -- Introduction -- I Modeling Data with Single Subspace -- Principal Component Analysis -- Robust Principal Component Analysis -- Nonlinear and Nonparametric Extensions -- II Modeling Data with Multiple Subspaces -- Algebraic-Geometric Methods -- Statistical Methods -- Spectral Methods -- Sparse and Low-Rank Methods -- III Applications -- Image Representation -- Image Segmentation -- Motion Segmentation -- Hybrid System Identification -- Final Words -- Appendices -- References -- Index.
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. Rene Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.
ISBN: 9780387878119
Standard No.: 10.1007/978-0-387-87811-9doiSubjects--Topical Terms:
516833
Mathematical analysis.
LC Class. No.: QA300
Dewey Class. No.: 515
Generalized principal component analysis
LDR
:03161nmm a2200337 a 4500
001
2035993
003
DE-He213
005
20161012140251.0
006
m d
007
cr nn 008maaau
008
161117s2016 nyu s 0 eng d
020
$a
9780387878119
$q
(electronic bk.)
020
$a
9780387878102
$q
(paper)
024
7
$a
10.1007/978-0-387-87811-9
$2
doi
035
$a
978-0-387-87811-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA300
072
7
$a
GPFC
$2
bicssc
072
7
$a
SCI064000
$2
bisacsh
072
7
$a
TEC004000
$2
bisacsh
082
0 4
$a
515
$2
23
090
$a
QA300
$b
.V649 2016
100
1
$a
Vidal, Rene.
$3
2191786
245
1 0
$a
Generalized principal component analysis
$h
[electronic resource] /
$c
by Rene Vidal, Yi Ma, S. Shankar Sastry.
260
$a
New York, NY :
$b
Springer New York :
$b
Imprint: Springer,
$c
2016.
300
$a
xxxii, 566 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Interdisciplinary applied mathematics,
$x
0939-6047 ;
$v
v.40
505
0
$a
Preface -- Acknowledgments -- Glossary of Notation -- Introduction -- I Modeling Data with Single Subspace -- Principal Component Analysis -- Robust Principal Component Analysis -- Nonlinear and Nonparametric Extensions -- II Modeling Data with Multiple Subspaces -- Algebraic-Geometric Methods -- Statistical Methods -- Spectral Methods -- Sparse and Low-Rank Methods -- III Applications -- Image Representation -- Image Segmentation -- Motion Segmentation -- Hybrid System Identification -- Final Words -- Appendices -- References -- Index.
520
$a
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. Rene Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.
650
0
$a
Mathematical analysis.
$3
516833
650
0
$a
Image processing
$x
Mathematics.
$3
579707
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Systems Theory, Control.
$3
893834
650
2 4
$a
Image Processing and Computer Vision.
$3
891070
650
2 4
$a
Signal, Image and Speech Processing.
$3
891073
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
1005896
650
2 4
$a
Algebraic Geometry.
$3
893861
700
1
$a
Ma, Yi.
$3
1676095
700
1
$a
Sastry, S. Shankar.
$3
649418
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Interdisciplinary applied mathematics ;
$v
v. 21.
$3
1280419
856
4 0
$u
http://dx.doi.org/10.1007/978-0-387-87811-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9279837
電子資源
11.線上閱覽_V
電子書
EB QA300
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入