語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Unsupervised learning algorithms
~
Celebi, M. Emre.
FindBook
Google Book
Amazon
博客來
Unsupervised learning algorithms
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Unsupervised learning algorithms/ edited by M. Emre Celebi, Kemal Aydin.
其他作者:
Celebi, M. Emre.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
x, 558 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction -- Feature Construction -- Feature Extraction -- Feature Selection -- Association Rule Learning -- Clustering -- Anomaly/Novelty/Outlier Detection -- Evaluation of Unsupervised Learning -- Applications -- Conclusion.
Contained By:
Springer eBooks
標題:
Machine learning. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-24211-8
ISBN:
9783319242118
Unsupervised learning algorithms
Unsupervised learning algorithms
[electronic resource] /edited by M. Emre Celebi, Kemal Aydin. - Cham :Springer International Publishing :2016. - x, 558 p. :ill. (some col.), digital ;24 cm.
Introduction -- Feature Construction -- Feature Extraction -- Feature Selection -- Association Rule Learning -- Clustering -- Anomaly/Novelty/Outlier Detection -- Evaluation of Unsupervised Learning -- Applications -- Conclusion.
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.
ISBN: 9783319242118
Standard No.: 10.1007/978-3-319-24211-8doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Unsupervised learning algorithms
LDR
:02303nmm a2200313 a 4500
001
2035835
003
DE-He213
005
20160930145900.0
006
m d
007
cr nn 008maaau
008
161117s2016 gw s 0 eng d
020
$a
9783319242118
$q
(electronic bk.)
020
$a
9783319242095
$q
(paper)
024
7
$a
10.1007/978-3-319-24211-8
$2
doi
035
$a
978-3-319-24211-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.U59 2016
245
0 0
$a
Unsupervised learning algorithms
$h
[electronic resource] /
$c
edited by M. Emre Celebi, Kemal Aydin.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 558 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction -- Feature Construction -- Feature Extraction -- Feature Selection -- Association Rule Learning -- Clustering -- Anomaly/Novelty/Outlier Detection -- Evaluation of Unsupervised Learning -- Applications -- Conclusion.
520
$a
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Computer algorithms.
$3
523872
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Communications Engineering, Networks.
$3
891094
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Computer Communication Networks.
$3
775497
650
2 4
$a
Pattern Recognition.
$3
891045
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
700
1
$a
Celebi, M. Emre.
$3
2055156
700
1
$a
Aydin, Kemal.
$3
2191486
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-24211-8
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9279679
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入