語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feasibility model of solar energy pl...
~
Majumder, Mrinmoy.
FindBook
Google Book
Amazon
博客來
Feasibility model of solar energy plants by ANN and MCDM techniques
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Feasibility model of solar energy plants by ANN and MCDM techniques/ by Mrinmoy Majumder, Apu K. Saha.
作者:
Majumder, Mrinmoy.
其他作者:
Saha, Apu K.
出版者:
Singapore :Springer Singapore : : 2016.,
面頁冊數:
x, 49 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
Contained By:
Springer eBooks
標題:
Solar energy - Computer simulation. -
電子資源:
http://dx.doi.org/10.1007/978-981-287-308-8
ISBN:
9789812873088
Feasibility model of solar energy plants by ANN and MCDM techniques
Majumder, Mrinmoy.
Feasibility model of solar energy plants by ANN and MCDM techniques
[electronic resource] /by Mrinmoy Majumder, Apu K. Saha. - Singapore :Springer Singapore :2016. - x, 49 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in energy,2191-5520. - SpringerBriefs in energy..
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
ISBN: 9789812873088
Standard No.: 10.1007/978-981-287-308-8doiSubjects--Topical Terms:
2191478
Solar energy
--Computer simulation.
LC Class. No.: TJ810
Dewey Class. No.: 621.471
Feasibility model of solar energy plants by ANN and MCDM techniques
LDR
:01970nmm a2200325 a 4500
001
2035830
003
DE-He213
005
20161006135432.0
006
m d
007
cr nn 008maaau
008
161117s2016 si s 0 eng d
020
$a
9789812873088
$q
(electronic bk.)
020
$a
9789812873071
$q
(paper)
024
7
$a
10.1007/978-981-287-308-8
$2
doi
035
$a
978-981-287-308-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ810
072
7
$a
THX
$2
bicssc
072
7
$a
TEC031010
$2
bisacsh
082
0 4
$a
621.471
$2
23
090
$a
TJ810
$b
.M234 2016
100
1
$a
Majumder, Mrinmoy.
$3
1085817
245
1 0
$a
Feasibility model of solar energy plants by ANN and MCDM techniques
$h
[electronic resource] /
$c
by Mrinmoy Majumder, Apu K. Saha.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 49 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in energy,
$x
2191-5520
505
0
$a
Introduction -- Justification -- Solar Energy -- Solar Energy -- Importance -- Benefits of Solar energy -- MCDM -- Definitions -- Applications -- Artificial Neural Network -- Definition -- Development Procedure of Models -- Development of the Feasibility Model -- Application of MCDM -- Development of Feasibility Index -- Model Validation of the Model -- Sensitivity Analysis -- Case Studies -- Locations -- Why this location? -- Results and Discussion -- MCDM Results -- ANN Results -- Conclusion.
520
$a
This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged.
650
0
$a
Solar energy
$x
Computer simulation.
$3
2191478
650
0
$a
Solar energy
$x
Decision making.
$3
2191479
650
1 4
$a
Energy.
$3
876794
650
2 4
$a
Renewable and Green Energy.
$3
928108
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Energy Technology.
$3
1001977
650
2 4
$a
Environmental Economics.
$3
895247
650
2 4
$a
Climate Change/Climate Change Impacts.
$3
2036591
700
1
$a
Saha, Apu K.
$3
2191477
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in energy.
$3
1570022
856
4 0
$u
http://dx.doi.org/10.1007/978-981-287-308-8
950
$a
Energy (Springer-40367)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9279674
電子資源
11.線上閱覽_V
電子書
EB TJ810
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入