語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learning analytics in R with SNA, LS...
~
Wild, Fridolin.
FindBook
Google Book
Amazon
博客來
Learning analytics in R with SNA, LSA, and MPIA
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learning analytics in R with SNA, LSA, and MPIA/ by Fridolin Wild.
作者:
Wild, Fridolin.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xiii, 275 p. :ill. (some col.), digital ;24 cm.
內容註:
Preface -- 1.Introduction -- 2.Learning Theory and Algorithmic Quality Characteristics -- 3.Representing and Analysing Purposiveness with SNA -- 4.Representing and Analysing Meaning with LSA -- 5.Meaningful, Purposive Interaction Analysis -- 6.Visual Analytics Using Vector Maps as Projection Surfaces -- 7.Calibrating for Specific Domains -- 8.Implementation: The MPIA Package -- 9.MPIA in Action: Example Learning Analytics -- 10.Evaluation -- 11.Conclusion and Outlook -- Annex A: Classes and Methods of the MPIA Package.
Contained By:
Springer eBooks
標題:
Data mining. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-28791-1
ISBN:
9783319287911
Learning analytics in R with SNA, LSA, and MPIA
Wild, Fridolin.
Learning analytics in R with SNA, LSA, and MPIA
[electronic resource] /by Fridolin Wild. - Cham :Springer International Publishing :2016. - xiii, 275 p. :ill. (some col.), digital ;24 cm.
Preface -- 1.Introduction -- 2.Learning Theory and Algorithmic Quality Characteristics -- 3.Representing and Analysing Purposiveness with SNA -- 4.Representing and Analysing Meaning with LSA -- 5.Meaningful, Purposive Interaction Analysis -- 6.Visual Analytics Using Vector Maps as Projection Surfaces -- 7.Calibrating for Specific Domains -- 8.Implementation: The MPIA Package -- 9.MPIA in Action: Example Learning Analytics -- 10.Evaluation -- 11.Conclusion and Outlook -- Annex A: Classes and Methods of the MPIA Package.
This book introduces Meaningful Purposive Interaction Analysis (MPIA) theory, which combines social network analysis (SNA) with latent semantic analysis (LSA) to help create and analyse a meaningful learning landscape from the digital traces left by a learning community in the co-construction of knowledge. The hybrid algorithm is implemented in the statistical programming language and environment R, introducing packages which capture - through matrix algebra - elements of learners' work with more knowledgeable others and resourceful content artefacts. The book provides comprehensive package-by-package application examples, and code samples that guide the reader through the MPIA model to show how the MPIA landscape can be constructed and the learner's journey mapped and analysed. This building block application will allow the reader to progress to using and building analytics to guide students and support decision-making in learning.
ISBN: 9783319287911
Standard No.: 10.1007/978-3-319-28791-1doiSubjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Learning analytics in R with SNA, LSA, and MPIA
LDR
:02437nmm a2200325 a 4500
001
2035675
003
DE-He213
005
20161003171009.0
006
m d
007
cr nn 008maaau
008
161117s2016 gw s 0 eng d
020
$a
9783319287911
$q
(electronic bk.)
020
$a
9783319287898
$q
(paper)
024
7
$a
10.1007/978-3-319-28791-1
$2
doi
035
$a
978-3-319-28791-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
W668 2016
100
1
$a
Wild, Fridolin.
$3
2191227
245
1 0
$a
Learning analytics in R with SNA, LSA, and MPIA
$h
[electronic resource] /
$c
by Fridolin Wild.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiii, 275 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Preface -- 1.Introduction -- 2.Learning Theory and Algorithmic Quality Characteristics -- 3.Representing and Analysing Purposiveness with SNA -- 4.Representing and Analysing Meaning with LSA -- 5.Meaningful, Purposive Interaction Analysis -- 6.Visual Analytics Using Vector Maps as Projection Surfaces -- 7.Calibrating for Specific Domains -- 8.Implementation: The MPIA Package -- 9.MPIA in Action: Example Learning Analytics -- 10.Evaluation -- 11.Conclusion and Outlook -- Annex A: Classes and Methods of the MPIA Package.
520
$a
This book introduces Meaningful Purposive Interaction Analysis (MPIA) theory, which combines social network analysis (SNA) with latent semantic analysis (LSA) to help create and analyse a meaningful learning landscape from the digital traces left by a learning community in the co-construction of knowledge. The hybrid algorithm is implemented in the statistical programming language and environment R, introducing packages which capture - through matrix algebra - elements of learners' work with more knowledgeable others and resourceful content artefacts. The book provides comprehensive package-by-package application examples, and code samples that guide the reader through the MPIA model to show how the MPIA landscape can be constructed and the learner's journey mapped and analysed. This building block application will allow the reader to progress to using and building analytics to guide students and support decision-making in learning.
650
0
$a
Data mining.
$3
562972
650
0
$a
R (Computer program language)
$3
784593
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Computational Linguistics.
$3
893900
650
2 4
$a
Mathematics in the Humanities and Social Sciences.
$3
1565599
650
2 4
$a
Educational Technology.
$3
876844
650
2 4
$a
Philosophy of Language.
$3
896994
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-28791-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9279519
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入