語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bayesian prediction and adaptive sam...
~
Xu, Yunfei.
FindBook
Google Book
Amazon
博客來
Bayesian prediction and adaptive sampling algorithms for mobile sensor networks = online environmental field reconstruction in space and time /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bayesian prediction and adaptive sampling algorithms for mobile sensor networks/ by Yunfei Xu ... [et al.].
其他題名:
online environmental field reconstruction in space and time /
其他作者:
Xu, Yunfei.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xii, 115 p. :ill., digital ;24 cm.
內容註:
Introduction -- Preliminaries -- Learning the Covariance Function -- Prediction with Known Covariance Function -- Fully Bayesian Approach -- Gaussian Process with Built-in Gaussian Markov Random Fields -- Bayesian Spatial Prediction Using Gaussian Markov Random Fields -- Conclusion.
Contained By:
Springer eBooks
標題:
Sensor networks. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-21921-9
ISBN:
9783319219219$q(electronic bk.)
Bayesian prediction and adaptive sampling algorithms for mobile sensor networks = online environmental field reconstruction in space and time /
Bayesian prediction and adaptive sampling algorithms for mobile sensor networks
online environmental field reconstruction in space and time /[electronic resource] :by Yunfei Xu ... [et al.]. - Cham :Springer International Publishing :2016. - xii, 115 p. :ill., digital ;24 cm. - SpringerBriefs in electrical and computer engineering. Control, automation and robotics,2191-8112. - SpringerBriefs in electrical and computer engineering.Control, automation and robotics..
Introduction -- Preliminaries -- Learning the Covariance Function -- Prediction with Known Covariance Function -- Fully Bayesian Approach -- Gaussian Process with Built-in Gaussian Markov Random Fields -- Bayesian Spatial Prediction Using Gaussian Markov Random Fields -- Conclusion.
This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constrained mobile sensors. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks starts with a simple spatio-temporal model and increases the level of model flexibility and uncertainty step by step, simultaneously solving increasingly complicated problems and coping with increasing complexity, until it ends with fully Bayesian approaches that take into account a broad spectrum of uncertainties in observations, model parameters, and constraints in mobile sensor networks. The book is timely, being very useful for many researchers in control, robotics, computer science and statistics trying to tackle a variety of tasks such as environmental monitoring and adaptive sampling, surveillance, exploration, and plume tracking which are of increasing currency. Problems are solved creatively by seamless combination of theories and concepts from Bayesian statistics, mobile sensor networks, optimal experiment design, and distributed computation.
ISBN: 9783319219219$q(electronic bk.)
Standard No.: 10.1007/978-3-319-21921-9doiSubjects--Topical Terms:
581965
Sensor networks.
LC Class. No.: TK7872.D48 / X8 2016
Dewey Class. No.: 681.2
Bayesian prediction and adaptive sampling algorithms for mobile sensor networks = online environmental field reconstruction in space and time /
LDR
:03658nmm a2200349 a 4500
001
2029095
003
DE-He213
005
20160721085401.0
006
m d
007
cr nn 008maaau
008
160908s2016 gw s 0 eng d
020
$a
9783319219219$q(electronic bk.)
020
$a
9783319219202$q(paper)
024
7
$a
10.1007/978-3-319-21921-9
$2
doi
035
$a
978-3-319-21921-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7872.D48
$b
X8 2016
072
7
$a
TJFM
$2
bicssc
072
7
$a
TJFD
$2
bicssc
072
7
$a
TEC004000
$2
bisacsh
072
7
$a
TEC037000
$2
bisacsh
082
0 4
$a
681.2
$2
23
090
$a
TK7872.D48
$b
B357 2016
245
0 0
$a
Bayesian prediction and adaptive sampling algorithms for mobile sensor networks
$h
[electronic resource] :
$b
online environmental field reconstruction in space and time /
$c
by Yunfei Xu ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xii, 115 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in electrical and computer engineering. Control, automation and robotics,
$x
2191-8112
505
0
$a
Introduction -- Preliminaries -- Learning the Covariance Function -- Prediction with Known Covariance Function -- Fully Bayesian Approach -- Gaussian Process with Built-in Gaussian Markov Random Fields -- Bayesian Spatial Prediction Using Gaussian Markov Random Fields -- Conclusion.
520
$a
This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constrained mobile sensors. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks starts with a simple spatio-temporal model and increases the level of model flexibility and uncertainty step by step, simultaneously solving increasingly complicated problems and coping with increasing complexity, until it ends with fully Bayesian approaches that take into account a broad spectrum of uncertainties in observations, model parameters, and constraints in mobile sensor networks. The book is timely, being very useful for many researchers in control, robotics, computer science and statistics trying to tackle a variety of tasks such as environmental monitoring and adaptive sampling, surveillance, exploration, and plume tracking which are of increasing currency. Problems are solved creatively by seamless combination of theories and concepts from Bayesian statistics, mobile sensor networks, optimal experiment design, and distributed computation.
650
0
$a
Sensor networks.
$3
581965
650
0
$a
Bayesian statistical decision theory.
$3
551404
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Control, Robotics, Mechatronics.
$3
1002220
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
1005896
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Signal, Image and Speech Processing.
$3
891073
650
2 4
$a
Communications Engineering, Networks.
$3
891094
700
1
$a
Xu, Yunfei.
$3
2179910
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in electrical and computer engineering.
$p
Control, automation and robotics.
$3
1622177
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-21921-9
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9276359
電子資源
11.線上閱覽_V
電子書
EB TK7872.D48 B357 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入