語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Missing data analysis in practice /
~
Raghunathan, Trivellore.
FindBook
Google Book
Amazon
博客來
Missing data analysis in practice /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Missing data analysis in practice // Trivellore Raghunathan.
作者:
Raghunathan, Trivellore.
出版者:
Boca Raton, FL :CRC Press/Taylor & Francis Group, : c2016.,
面頁冊數:
xix, 210 p. :ill. ;25 cm.
內容註:
Basic concepts -- Weighting methods -- Imputation -- Multiple imputation -- Regression analysis -- Longitudinal analysis with missing values -- Nonignorable missing data mechanisms -- Other applications -- Other topics.
標題:
Mathematical statistics. -
ISBN:
9781482211924
Missing data analysis in practice /
Raghunathan, Trivellore.
Missing data analysis in practice /
Trivellore Raghunathan. - Boca Raton, FL :CRC Press/Taylor & Francis Group,c2016. - xix, 210 p. :ill. ;25 cm. - Chapman & Hall/CRC interdisciplinary statistics series. - Interdisciplinary statistics..
Includes bibliographical references (p. 187-203) and index.
Basic concepts -- Weighting methods -- Imputation -- Multiple imputation -- Regression analysis -- Longitudinal analysis with missing values -- Nonignorable missing data mechanisms -- Other applications -- Other topics.
"Missing Data Analysis in Practice provides practical methods for analyzing missing data along with the heuristic reasoning for understanding the theoretical underpinnings. Drawing on his 25 years of experience researching, teaching, and consulting in quantitative areas, the author presents both frequentist and Bayesian perspectives. He describes easy-to-implement approaches, the underlying assumptions, and practical means for assessing these assumptions. Actual and simulated data sets illustrate important concepts, with the data sets and codes available online. The book underscores the development of missing data methods and their adaptation to practical problems. It mainly focuses on the traditional missing data problem. The author also shows how to use the missing data framework in many other statistical problems, such as measurement error, finite population inference, disclosure limitation, combing information from multiple data sources, and causal inference"--
ISBN: 9781482211924UK49.99
LCCN: 2016302652Subjects--Topical Terms:
516858
Mathematical statistics.
LC Class. No.: QA276 / .R26 2016
Dewey Class. No.: 519.5
Missing data analysis in practice /
LDR
:02082nam a2200253 a 4500
001
2017464
003
DLC
005
20160714172437.0
008
161003s2016 flua b 001 0 eng d
010
$a
2016302652
020
$a
9781482211924
$q
(hardcover) :
$c
UK49.99
020
$a
1482211920
$q
(hardcover)
020
$z
9781482211931
$q
(PDF ebook)
035
$a
(OCoLC)ocn909324190
040
$a
BTCTA
$b
eng
$c
BTCTA
$d
BDX
$d
YDXCP
$d
SA$
$d
OCLCO
$d
KSU
$d
OCLCQ
$d
DGU
$d
EYM
$d
OCLCF
$d
CDX
$d
OCLCQ
$d
DLC
042
$a
lccopycat
050
0 0
$a
QA276
$b
.R26 2016
082
0 4
$a
519.5
$2
23
100
1
$a
Raghunathan, Trivellore.
$3
2184938
245
1 0
$a
Missing data analysis in practice /
$c
Trivellore Raghunathan.
260
$a
Boca Raton, FL :
$b
CRC Press/Taylor & Francis Group,
$c
c2016.
300
$a
xix, 210 p. :
$b
ill. ;
$c
25 cm.
490
1
$a
Chapman & Hall/CRC interdisciplinary statistics series
504
$a
Includes bibliographical references (p. 187-203) and index.
505
0
$a
Basic concepts -- Weighting methods -- Imputation -- Multiple imputation -- Regression analysis -- Longitudinal analysis with missing values -- Nonignorable missing data mechanisms -- Other applications -- Other topics.
520
$a
"Missing Data Analysis in Practice provides practical methods for analyzing missing data along with the heuristic reasoning for understanding the theoretical underpinnings. Drawing on his 25 years of experience researching, teaching, and consulting in quantitative areas, the author presents both frequentist and Bayesian perspectives. He describes easy-to-implement approaches, the underlying assumptions, and practical means for assessing these assumptions. Actual and simulated data sets illustrate important concepts, with the data sets and codes available online. The book underscores the development of missing data methods and their adaptation to practical problems. It mainly focuses on the traditional missing data problem. The author also shows how to use the missing data framework in many other statistical problems, such as measurement error, finite population inference, disclosure limitation, combing information from multiple data sources, and causal inference"--
$c
Provided by publisher.
650
0
$a
Mathematical statistics.
$3
516858
650
0
$a
Missing observations (Statistics)
$3
566005
830
0
$a
Interdisciplinary statistics.
$3
626308
筆 0 讀者評論
採購/卷期登收資訊
壽豐校區(SF Campus)
-
最近登收卷期:
1 (2016/10/03)
明細
館藏地:
全部
六樓西文書區HC-Z(6F Western Language Books)
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W0178679
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
QA276 R26 2016
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入