語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Text mining and visualization : = ca...
~
Hofmann, Markus.
FindBook
Google Book
Amazon
博客來
Text mining and visualization : = case studies using open-source tools /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Text mining and visualization :/ edited by Markus Hofmann, Andrew Chisholm.
其他題名:
case studies using open-source tools /
其他作者:
Hofmann, Markus.
出版者:
Boca Raton :CRC Press, : c2016.,
面頁冊數:
xl, 297 p., [10] p. of plates :ill. ;26 cm.
附註:
"A Champman & Hall Book."
內容註:
RapidMiner for text analytic fundamentals / John Ryan -- Empirical Zipf-Mandelbrot variation for sequential windows within documents / Andrew Chisholm -- Introduction to the KNIME text processing extention / Kilian Thiel -- Social media analysis -- text mining meets network mining / Kilian Thiel, Tobias Kötter, Rosaria Silipo, and Phil Winters -- Mining unstructured user reviews with Python / Brian Carter -- Sentiment classification and visualization of product review data / Alexander Piazza and Pavlina Davcheva -- Mining search logs for usage patterns / Tony Russell-Rose and Paul Clough -- Temporally aware online news mining and visualization with Python / Kyle Goslin -- Text classification using Python / David Colton -- Sentiment analysis of stock market behavior from Twitter using the R tool / Nun Oliverira, Paulo Cortez, and Nelson Areal -- Topic modeling / Patrick Buckley -- Empiricial analysis of the stack overflow tags network / Christos Iraklis Tsatsoulis.
標題:
Data mining. -
ISBN:
9781482237573
Text mining and visualization : = case studies using open-source tools /
Text mining and visualization :
case studies using open-source tools /edited by Markus Hofmann, Andrew Chisholm. - Boca Raton :CRC Press,c2016. - xl, 297 p., [10] p. of plates :ill. ;26 cm. - Chapman & Hall/CRC data mining and knowledge discovery series. - Chapman & Hall/CRC data mining and knowledge discovery series..
"A Champman & Hall Book."
Includes bibliographical references and index.
RapidMiner for text analytic fundamentals / John Ryan -- Empirical Zipf-Mandelbrot variation for sequential windows within documents / Andrew Chisholm -- Introduction to the KNIME text processing extention / Kilian Thiel -- Social media analysis -- text mining meets network mining / Kilian Thiel, Tobias Kötter, Rosaria Silipo, and Phil Winters -- Mining unstructured user reviews with Python / Brian Carter -- Sentiment classification and visualization of product review data / Alexander Piazza and Pavlina Davcheva -- Mining search logs for usage patterns / Tony Russell-Rose and Paul Clough -- Temporally aware online news mining and visualization with Python / Kyle Goslin -- Text classification using Python / David Colton -- Sentiment analysis of stock market behavior from Twitter using the R tool / Nun Oliverira, Paulo Cortez, and Nelson Areal -- Topic modeling / Patrick Buckley -- Empiricial analysis of the stack overflow tags network / Christos Iraklis Tsatsoulis.
"Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors - all highly experienced with text mining and open-source software - explain how text data are gathered and processed from a wide variety of sources, including books, server access logs, websites, social media sites, and message boards. Each chapter presents a case study that you can follow as part of a step-by-step, reproducible example. You can also easily apply and extend the techniques to other problems. All the examples are available on a supplementary website. The book shows you how to exploit your text data, offering successful application examples and blueprints for you to tackle your text mining tasks and benefit from open and freely available tools. It gets you up to date on the latest and most powerful tools, the data mining process, and specific text mining activities"--Back cover.
ISBN: 9781482237573UK63.99
LCCN: 2016301980Subjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343 / T49 2016
Dewey Class. No.: 006.3/12
Text mining and visualization : = case studies using open-source tools /
LDR
:02970nam a2200265 a 4500
001
2017419
003
DLC
005
20160617070850.0
008
161003s2016 fluaf b 001 0 eng d
010
$a
2016301980
020
$a
9781482237573
$q
(hbk.) :
$c
UK63.99
020
$a
1482237571
$q
(hbk.)
020
$z
9781482237580
$q
(PDF ebook)
035
$a
(OCoLC)ocn911801405
040
$a
YDXCP
$b
eng
$c
YDXCP
$d
BTCTA
$d
BDX
$d
KSU
$d
OCLCQ
$d
OCLCF
$d
NUI
$d
CDX
$d
CHVBK
$d
SOI
$d
OCLCQ
$d
DLC
042
$a
lccopycat
050
0 0
$a
QA76.9.D343
$b
T49 2016
082
0 4
$a
006.3/12
$2
23
245
0 0
$a
Text mining and visualization :
$b
case studies using open-source tools /
$c
edited by Markus Hofmann, Andrew Chisholm.
260
$a
Boca Raton :
$b
CRC Press,
$c
c2016.
300
$a
xl, 297 p., [10] p. of plates :
$b
ill. ;
$c
26 cm.
490
1
$a
Chapman & Hall/CRC data mining and knowledge discovery series
500
$a
"A Champman & Hall Book."
504
$a
Includes bibliographical references and index.
505
0
$a
RapidMiner for text analytic fundamentals / John Ryan -- Empirical Zipf-Mandelbrot variation for sequential windows within documents / Andrew Chisholm -- Introduction to the KNIME text processing extention / Kilian Thiel -- Social media analysis -- text mining meets network mining / Kilian Thiel, Tobias Kötter, Rosaria Silipo, and Phil Winters -- Mining unstructured user reviews with Python / Brian Carter -- Sentiment classification and visualization of product review data / Alexander Piazza and Pavlina Davcheva -- Mining search logs for usage patterns / Tony Russell-Rose and Paul Clough -- Temporally aware online news mining and visualization with Python / Kyle Goslin -- Text classification using Python / David Colton -- Sentiment analysis of stock market behavior from Twitter using the R tool / Nun Oliverira, Paulo Cortez, and Nelson Areal -- Topic modeling / Patrick Buckley -- Empiricial analysis of the stack overflow tags network / Christos Iraklis Tsatsoulis.
520
$a
"Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors - all highly experienced with text mining and open-source software - explain how text data are gathered and processed from a wide variety of sources, including books, server access logs, websites, social media sites, and message boards. Each chapter presents a case study that you can follow as part of a step-by-step, reproducible example. You can also easily apply and extend the techniques to other problems. All the examples are available on a supplementary website. The book shows you how to exploit your text data, offering successful application examples and blueprints for you to tackle your text mining tasks and benefit from open and freely available tools. It gets you up to date on the latest and most powerful tools, the data mining process, and specific text mining activities"--Back cover.
650
0
$a
Data mining.
$3
562972
700
1
$a
Hofmann, Markus.
$3
842106
700
1
$a
Chisholm, Andrew,
$d
1959-
$3
744483
830
0
$a
Chapman & Hall/CRC data mining and knowledge discovery series.
$3
1097255
筆 0 讀者評論
採購/卷期登收資訊
壽豐校區(SF Campus)
-
最近登收卷期:
1 (2016/10/03)
明細
館藏地:
全部
六樓西文書區HC-Z(6F Western Language Books)
出版年:
卷號:
館藏
2 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W0140801
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
QA76.9.D343 T49 2016
一般使用(Normal)
在架
0
預約
W0178766
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
QA76.9.D343 T49 2016
一般使用(Normal)
遺失
0
2 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入