語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Structural pattern recognition with ...
~
Riesen, Kaspar.
FindBook
Google Book
Amazon
博客來
Structural pattern recognition with graph edit distance = approximation algorithms and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Structural pattern recognition with graph edit distance/ by Kaspar Riesen.
其他題名:
approximation algorithms and applications /
作者:
Riesen, Kaspar.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xiii, 158 p. :ill., digital ;24 cm.
內容註:
Part I: Foundations and Applications of Graph Edit Distance -- Introduction and Basic Concepts -- Graph Edit Distance -- Bipartite Graph Edit Distance -- Part II: Recent Developments and Research on Graph Edit Distance -- Improving the Distance Accuracy of Bipartite Graph Edit Distance -- Learning Exact Graph Edit Distance -- Speeding Up Bipartite Graph Edit Distance -- Conclusions and Future Work -- Appendix A: Experimental Evaluation of Sorted Beam Search -- Appendix B: Data Sets.
Contained By:
Springer eBooks
標題:
Pattern recognition systems. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-27252-8
ISBN:
9783319272528$q(electronic bk.)
Structural pattern recognition with graph edit distance = approximation algorithms and applications /
Riesen, Kaspar.
Structural pattern recognition with graph edit distance
approximation algorithms and applications /[electronic resource] :by Kaspar Riesen. - Cham :Springer International Publishing :2015. - xiii, 158 p. :ill., digital ;24 cm. - Advances in computer vision and pattern recognition,2191-6586. - Advances in computer vision and pattern recognition..
Part I: Foundations and Applications of Graph Edit Distance -- Introduction and Basic Concepts -- Graph Edit Distance -- Bipartite Graph Edit Distance -- Part II: Recent Developments and Research on Graph Edit Distance -- Improving the Distance Accuracy of Bipartite Graph Edit Distance -- Learning Exact Graph Edit Distance -- Speeding Up Bipartite Graph Edit Distance -- Conclusions and Future Work -- Appendix A: Experimental Evaluation of Sorted Beam Search -- Appendix B: Data Sets.
This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED), one of the most flexible graph distance models available. The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: Formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm Describes a reformulation of GED to a quadratic assignment problem Illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem Reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework Examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time Includes appendices listing the datasets employed for the experimental evaluations discussed in the book Researchers and graduate students interested in the field of structural pattern recognition will find this focused work to be an essential reference on the latest developments in GED. Dr. Kaspar Riesen is a university lecturer of computer science in the Institute for Information Systems at the University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland.
ISBN: 9783319272528$q(electronic bk.)
Standard No.: 10.1007/978-3-319-27252-8doiSubjects--Topical Terms:
527885
Pattern recognition systems.
LC Class. No.: TK7882.P3
Dewey Class. No.: 006.4
Structural pattern recognition with graph edit distance = approximation algorithms and applications /
LDR
:02983nmm a2200325 a 4500
001
2016598
003
DE-He213
005
20160524110128.0
006
m d
007
cr nn 008maaau
008
160613s2015 gw s 0 eng d
020
$a
9783319272528$q(electronic bk.)
020
$a
9783319272511$q(paper)
024
7
$a
10.1007/978-3-319-27252-8
$2
doi
035
$a
978-3-319-27252-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7882.P3
072
7
$a
UYQP
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
082
0 4
$a
006.4
$2
23
090
$a
TK7882.P3
$b
R561 2015
100
1
$a
Riesen, Kaspar.
$3
2165747
245
1 0
$a
Structural pattern recognition with graph edit distance
$h
[electronic resource] :
$b
approximation algorithms and applications /
$c
by Kaspar Riesen.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xiii, 158 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advances in computer vision and pattern recognition,
$x
2191-6586
505
0
$a
Part I: Foundations and Applications of Graph Edit Distance -- Introduction and Basic Concepts -- Graph Edit Distance -- Bipartite Graph Edit Distance -- Part II: Recent Developments and Research on Graph Edit Distance -- Improving the Distance Accuracy of Bipartite Graph Edit Distance -- Learning Exact Graph Edit Distance -- Speeding Up Bipartite Graph Edit Distance -- Conclusions and Future Work -- Appendix A: Experimental Evaluation of Sorted Beam Search -- Appendix B: Data Sets.
520
$a
This unique text/reference presents a thorough introduction to the field of structural pattern recognition, with a particular focus on graph edit distance (GED), one of the most flexible graph distance models available. The book also provides a detailed review of a diverse selection of novel methods related to GED, and concludes by suggesting possible avenues for future research. Topics and features: Formally introduces the concept of GED, and highlights the basic properties of this graph matching paradigm Describes a reformulation of GED to a quadratic assignment problem Illustrates how the quadratic assignment problem of GED can be reduced to a linear sum assignment problem Reviews strategies for reducing both the overestimation of the true edit distance and the matching time in the approximation framework Examines the improvement demonstrated by the described algorithmic framework with respect to the distance accuracy and the matching time Includes appendices listing the datasets employed for the experimental evaluations discussed in the book Researchers and graduate students interested in the field of structural pattern recognition will find this focused work to be an essential reference on the latest developments in GED. Dr. Kaspar Riesen is a university lecturer of computer science in the Institute for Information Systems at the University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland.
650
0
$a
Pattern recognition systems.
$3
527885
650
0
$a
Computer vision.
$3
540671
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Pattern Recognition.
$3
891045
650
2 4
$a
Data Structures.
$3
891009
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Advances in computer vision and pattern recognition.
$3
1567575
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-27252-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9275592
電子資源
11.線上閱覽_V
電子書
EB TK7882.P3 R561 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入