語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
p-Laplace equation in the Heisenberg...
~
Ricciotti, Diego.
FindBook
Google Book
Amazon
博客來
p-Laplace equation in the Heisenberg group = regularity of solutions /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
p-Laplace equation in the Heisenberg group/ by Diego Ricciotti.
其他題名:
regularity of solutions /
作者:
Ricciotti, Diego.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xiv, 87 p. :ill., digital ;24 cm.
內容註:
1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity.
Contained By:
Springer eBooks
標題:
Laplacian operator. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-23790-9
ISBN:
9783319237909$q(electronic bk.)
p-Laplace equation in the Heisenberg group = regularity of solutions /
Ricciotti, Diego.
p-Laplace equation in the Heisenberg group
regularity of solutions /[electronic resource] :by Diego Ricciotti. - Cham :Springer International Publishing :2015. - xiv, 87 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity.
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
ISBN: 9783319237909$q(electronic bk.)
Standard No.: 10.1007/978-3-319-23790-9doiSubjects--Topical Terms:
596177
Laplacian operator.
LC Class. No.: QA406
Dewey Class. No.: 515.53
p-Laplace equation in the Heisenberg group = regularity of solutions /
LDR
:01791nmm a2200325 a 4500
001
2016507
003
DE-He213
005
20160512153056.0
006
m d
007
cr nn 008maaau
008
160613s2015 gw s 0 eng d
020
$a
9783319237909$q(electronic bk.)
020
$a
9783319237893$q(paper)
024
7
$a
10.1007/978-3-319-23790-9
$2
doi
035
$a
978-3-319-23790-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA406
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.53
$2
23
090
$a
QA406
$b
.R493 2015
100
1
$a
Ricciotti, Diego.
$3
2165637
245
1 0
$a
p-Laplace equation in the Heisenberg group
$h
[electronic resource] :
$b
regularity of solutions /
$c
by Diego Ricciotti.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xiv, 87 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
1 Introduction -- 2 The Heisenberg Group -- 3 The p-Laplace Equation -- 4 C1 regularity for the non-degenerate equation -- 5 Lipschitz Regularity.
520
$a
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
650
0
$a
Laplacian operator.
$3
596177
650
0
$a
Harmonic functions.
$3
596179
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Ordinary Differential Equations.
$3
891264
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
1566700
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-23790-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9275501
電子資源
11.線上閱覽_V
電子書
EB QA406 .R493 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入