語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Interpretability of computational in...
~
Kenesei, Tamas.
FindBook
Google Book
Amazon
博客來
Interpretability of computational intelligence-based regression models
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Interpretability of computational intelligence-based regression models/ by Tamas Kenesei, Janos Abonyi.
作者:
Kenesei, Tamas.
其他作者:
Abonyi, Janos.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
x, 82 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction -- Interpretability of Hinging Hyperplanes -- Interpretability of Neural Networks -- Interpretability of Support Vector Machines -- Summary.
Contained By:
Springer eBooks
標題:
Regression analysis. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-21942-4
ISBN:
9783319219424
Interpretability of computational intelligence-based regression models
Kenesei, Tamas.
Interpretability of computational intelligence-based regression models
[electronic resource] /by Tamas Kenesei, Janos Abonyi. - Cham :Springer International Publishing :2015. - x, 82 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Introduction -- Interpretability of Hinging Hyperplanes -- Interpretability of Neural Networks -- Interpretability of Support Vector Machines -- Summary.
The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression. The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning.
ISBN: 9783319219424
Standard No.: 10.1007/978-3-319-21942-4doiSubjects--Topical Terms:
529831
Regression analysis.
LC Class. No.: QA278.2
Dewey Class. No.: 519.536
Interpretability of computational intelligence-based regression models
LDR
:02295nmm a2200337 a 4500
001
2013071
003
DE-He213
005
20160503113729.0
006
m d
007
cr nn 008maaau
008
160518s2015 gw s 0 eng d
020
$a
9783319219424
$q
(electronic bk.)
020
$a
9783319219417
$q
(paper)
024
7
$a
10.1007/978-3-319-21942-4
$2
doi
035
$a
978-3-319-21942-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.2
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
519.536
$2
23
090
$a
QA278.2
$b
.K33 2015
100
1
$a
Kenesei, Tamas.
$3
2162391
245
1 0
$a
Interpretability of computational intelligence-based regression models
$h
[electronic resource] /
$c
by Tamas Kenesei, Janos Abonyi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
x, 82 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Introduction -- Interpretability of Hinging Hyperplanes -- Interpretability of Neural Networks -- Interpretability of Support Vector Machines -- Summary.
520
$a
The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression. The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning.
650
0
$a
Regression analysis.
$3
529831
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
700
1
$a
Abonyi, Janos.
$3
2162392
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-21942-4
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9274649
電子資源
11.線上閱覽_V
電子書
EB QA278.2 .K33 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入