語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Measures of complexity = festschrift...
~
Vovk, Vladimir.
FindBook
Google Book
Amazon
博客來
Measures of complexity = festschrift for Alexey Chervonenkis /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Measures of complexity/ edited by Vladimir Vovk, Harris Papadopoulos, Alexander Gammerman.
其他題名:
festschrift for Alexey Chervonenkis /
其他作者:
Vovk, Vladimir.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xxxi, 399 p. :ill., digital ;24 cm.
內容註:
Chervonenkis's Recollections -- A Paper That Created Three New Fields -- On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities -- Sketched History: VC Combinatorics, 1826 up to 1975 -- Institute of Control Sciences through the Lens of VC Dimension -- VC Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications -- Around Kolmogorov Complexity: Basic Notions and Results -- Predictive Complexity for Games with Finite Outcome Spaces -- Making Vapnik-Chervonenkis Bounds Accurate -- Comment: Transductive PAC-Bayes Bounds Seen as a Generalization of Vapnik-Chervonenkis Bounds -- Comment: The Two Styles of VC Bounds -- Rejoinder: Making VC Bounds Accurate -- Measures of Complexity in the Theory of Machine Learning -- Classes of Functions Related to VC Properties -- On Martingale Extensions of Vapnik-Chervonenkis -- Theory with Applications to Online Learning -- Measuring the Capacity of Sets of Functions in the Analysis of ERM -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Strongly Consistent Detection for Nonparametric Hypotheses -- On the Version Space Compression Set Size and Its Applications -- Lower Bounds for Sparse Coding -- Robust Algorithms via PAC-Bayes and Laplace Distributions -- Postscript: Tragic Death of Alexey Chervonenkis -- Credits -- Index.
Contained By:
Springer eBooks
標題:
Machine learning. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-21852-6
ISBN:
9783319218526
Measures of complexity = festschrift for Alexey Chervonenkis /
Measures of complexity
festschrift for Alexey Chervonenkis /[electronic resource] :edited by Vladimir Vovk, Harris Papadopoulos, Alexander Gammerman. - Cham :Springer International Publishing :2015. - xxxi, 399 p. :ill., digital ;24 cm.
Chervonenkis's Recollections -- A Paper That Created Three New Fields -- On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities -- Sketched History: VC Combinatorics, 1826 up to 1975 -- Institute of Control Sciences through the Lens of VC Dimension -- VC Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications -- Around Kolmogorov Complexity: Basic Notions and Results -- Predictive Complexity for Games with Finite Outcome Spaces -- Making Vapnik-Chervonenkis Bounds Accurate -- Comment: Transductive PAC-Bayes Bounds Seen as a Generalization of Vapnik-Chervonenkis Bounds -- Comment: The Two Styles of VC Bounds -- Rejoinder: Making VC Bounds Accurate -- Measures of Complexity in the Theory of Machine Learning -- Classes of Functions Related to VC Properties -- On Martingale Extensions of Vapnik-Chervonenkis -- Theory with Applications to Online Learning -- Measuring the Capacity of Sets of Functions in the Analysis of ERM -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Strongly Consistent Detection for Nonparametric Hypotheses -- On the Version Space Compression Set Size and Its Applications -- Lower Bounds for Sparse Coding -- Robust Algorithms via PAC-Bayes and Laplace Distributions -- Postscript: Tragic Death of Alexey Chervonenkis -- Credits -- Index.
This book brings together historical notes, reviews of research developments, fresh ideas on how to make VC (Vapnik-Chervonenkis) guarantees tighter, and new technical contributions in the areas of machine learning, statistical inference, classification, algorithmic statistics, and pattern recognition. The contributors are leading scientists in domains such as statistics, mathematics, and theoretical computer science, and the book will be of interest to researchers and graduate students in these domains.
ISBN: 9783319218526
Standard No.: 10.1007/978-3-319-21852-6doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Measures of complexity = festschrift for Alexey Chervonenkis /
LDR
:03290nmm a2200325 a 4500
001
2013069
003
DE-He213
005
20160422160524.0
006
m d
007
cr nn 008maaau
008
160518s2015 gw s 0 eng d
020
$a
9783319218526
$q
(electronic bk.)
020
$a
9783319218519
$q
(paper)
024
7
$a
10.1007/978-3-319-21852-6
$2
doi
035
$a
978-3-319-21852-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M484 2015
245
0 0
$a
Measures of complexity
$h
[electronic resource] :
$b
festschrift for Alexey Chervonenkis /
$c
edited by Vladimir Vovk, Harris Papadopoulos, Alexander Gammerman.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xxxi, 399 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chervonenkis's Recollections -- A Paper That Created Three New Fields -- On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities -- Sketched History: VC Combinatorics, 1826 up to 1975 -- Institute of Control Sciences through the Lens of VC Dimension -- VC Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications -- Around Kolmogorov Complexity: Basic Notions and Results -- Predictive Complexity for Games with Finite Outcome Spaces -- Making Vapnik-Chervonenkis Bounds Accurate -- Comment: Transductive PAC-Bayes Bounds Seen as a Generalization of Vapnik-Chervonenkis Bounds -- Comment: The Two Styles of VC Bounds -- Rejoinder: Making VC Bounds Accurate -- Measures of Complexity in the Theory of Machine Learning -- Classes of Functions Related to VC Properties -- On Martingale Extensions of Vapnik-Chervonenkis -- Theory with Applications to Online Learning -- Measuring the Capacity of Sets of Functions in the Analysis of ERM -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Algorithmic Statistics Revisited -- Justifying Information-Geometric Causal Inference -- Interpretation of Black-Box Predictive Models -- PAC-Bayes Bounds for Supervised Classification -- Bounding Embeddings of VC Classes into Maximum Classes -- Strongly Consistent Detection for Nonparametric Hypotheses -- On the Version Space Compression Set Size and Its Applications -- Lower Bounds for Sparse Coding -- Robust Algorithms via PAC-Bayes and Laplace Distributions -- Postscript: Tragic Death of Alexey Chervonenkis -- Credits -- Index.
520
$a
This book brings together historical notes, reviews of research developments, fresh ideas on how to make VC (Vapnik-Chervonenkis) guarantees tighter, and new technical contributions in the areas of machine learning, statistical inference, classification, algorithmic statistics, and pattern recognition. The contributors are leading scientists in domains such as statistics, mathematics, and theoretical computer science, and the book will be of interest to researchers and graduate students in these domains.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Pattern recognition systems.
$3
527885
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Probability and Statistics in Computer Science.
$3
891072
650
2 4
$a
Optimization.
$3
891104
700
1
$a
Vovk, Vladimir.
$3
895882
700
1
$a
Papadopoulos, Harris.
$3
1245484
700
1
$a
Gammerman, Alexander.
$3
895880
700
1
$a
Chervonenkis, Alexey.
$3
2162387
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-21852-6
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9274647
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .M484 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入