語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An introduction to machine learning
~
Kubat, Miroslav.
FindBook
Google Book
Amazon
博客來
An introduction to machine learning
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An introduction to machine learning/ by Miroslav Kubat.
作者:
Kubat, Miroslav.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xiii, 291 p. :ill. (some col.), digital ;24 cm.
內容註:
A Simple Machine-Learning Task -- Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- Inter-Class Boundaries: Linear and Polynomial Classifiers -- Artificial Neural Networks -- Decision Trees -- Computational Learning Theory -- A Few Instructive Applications -- Induction of Voting Assemblies -- Some Practical Aspects to Know About -- Performance Evaluation -- Statistical Significance -- The Genetic Algorithm -- Reinforcement learning.
Contained By:
Springer eBooks
標題:
Machine learning. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-20010-1
ISBN:
9783319200101 (electronic bk.)
An introduction to machine learning
Kubat, Miroslav.
An introduction to machine learning
[electronic resource] /by Miroslav Kubat. - Cham :Springer International Publishing :2015. - xiii, 291 p. :ill. (some col.), digital ;24 cm.
A Simple Machine-Learning Task -- Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- Inter-Class Boundaries: Linear and Polynomial Classifiers -- Artificial Neural Networks -- Decision Trees -- Computational Learning Theory -- A Few Instructive Applications -- Induction of Voting Assemblies -- Some Practical Aspects to Know About -- Performance Evaluation -- Statistical Significance -- The Genetic Algorithm -- Reinforcement learning.
This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of "boosting," how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms.
ISBN: 9783319200101 (electronic bk.)
Standard No.: 10.1007/978-3-319-20010-1doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.3
An introduction to machine learning
LDR
:02048nmm a2200325 a 4500
001
2008860
003
DE-He213
005
20160223091622.0
006
m d
007
cr nn 008maaau
008
160311s2015 gw s 0 eng d
020
$a
9783319200101 (electronic bk.)
020
$a
9783319200095 (paper)
024
7
$a
10.1007/978-3-319-20010-1
$2
doi
035
$a
978-3-319-20010-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3
$2
23
090
$a
Q325.5
$b
.K95 2015
100
1
$a
Kubat, Miroslav.
$3
2157631
245
1 3
$a
An introduction to machine learning
$h
[electronic resource] /
$c
by Miroslav Kubat.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xiii, 291 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
A Simple Machine-Learning Task -- Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- Inter-Class Boundaries: Linear and Polynomial Classifiers -- Artificial Neural Networks -- Decision Trees -- Computational Learning Theory -- A Few Instructive Applications -- Induction of Voting Assemblies -- Some Practical Aspects to Know About -- Performance Evaluation -- Statistical Significance -- The Genetic Algorithm -- Reinforcement learning.
520
$a
This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of "boosting," how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms.
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Simulation and Modeling.
$3
890873
650
2 4
$a
Information Storage and Retrieval.
$3
761906
650
2 4
$a
Pattern Recognition.
$3
891045
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-20010-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9273740
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .K95 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入