語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Automatic SIMD vectorization of SSA-...
~
Karrenberg, Ralf.
FindBook
Google Book
Amazon
博客來
Automatic SIMD vectorization of SSA-based control flow graphs
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Automatic SIMD vectorization of SSA-based control flow graphs/ by Ralf Karrenberg.
作者:
Karrenberg, Ralf.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden : : 2015.,
面頁冊數:
xvi, 187 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Vector processing (Computer science) -
電子資源:
http://dx.doi.org/10.1007/978-3-658-10113-8
ISBN:
9783658101138 (electronic bk.)
Automatic SIMD vectorization of SSA-based control flow graphs
Karrenberg, Ralf.
Automatic SIMD vectorization of SSA-based control flow graphs
[electronic resource] /by Ralf Karrenberg. - Wiesbaden :Springer Fachmedien Wiesbaden :2015. - xvi, 187 p. :ill., digital ;24 cm.
Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation, or video decoding require the same computations to be performed on huge amounts of data. Without WFV, one processor core executes a single instance of a data-parallel function. WFV transforms the function to execute multiple instances at once using SIMD instructions. The author describes an advanced WFV algorithm that includes a variety of analyses and code generation techniques. He shows that this approach improves the performance of the generated code in a variety of use cases. Contents Introduction, Foundations & Terminology, Related Work SIMD Property Analyses Whole-Function Vectorization Dynamic Code Variants, Evaluation, Conclusion, Outlook Target Groups Computer science researchers and students working in data-parallel computing Software and compiler engineers in the fields high-performance computing and compiler construction About the Author Ralf Karrenberg received his PhD in computer science at Saarland University in 2015. His seminal research on compilation techniques for SIMD architectures found wide recognition in both academia and the CPU and GPU industry. Currently, he is working for NVIDIA in Berlin. Prior to that, he contributed to research and development for visual effects in blockbuster movies at Weta Digital, New Zealand.
ISBN: 9783658101138 (electronic bk.)
Standard No.: 10.1007/978-3-658-10113-8doiSubjects--Topical Terms:
692137
Vector processing (Computer science)
LC Class. No.: QA76.5
Dewey Class. No.: 004.35
Automatic SIMD vectorization of SSA-based control flow graphs
LDR
:02525nam a2200325 a 4500
001
2007533
003
DE-He213
005
20160115151321.0
006
m d
007
cr nn 008maaau
008
160219s2015 gw s 0 eng d
020
$a
9783658101138 (electronic bk.)
020
$a
9783658101121 (paper)
024
7
$a
10.1007/978-3-658-10113-8
$2
doi
035
$a
978-3-658-10113-8
040
$a
GP
$c
GP
041
1
$a
eng
$b
eng
$b
ger
$h
eng
050
4
$a
QA76.5
072
7
$a
UMX
$2
bicssc
072
7
$a
UMC
$2
bicssc
072
7
$a
COM051010
$2
bisacsh
072
7
$a
COM010000
$2
bisacsh
082
0 4
$a
004.35
$2
23
090
$a
QA76.5
$b
.K18 2015
100
1
$a
Karrenberg, Ralf.
$3
2156393
245
1 0
$a
Automatic SIMD vectorization of SSA-based control flow graphs
$h
[electronic resource] /
$c
by Ralf Karrenberg.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2015.
300
$a
xvi, 187 p. :
$b
ill., digital ;
$c
24 cm.
520
$a
Ralf Karrenberg presents Whole-Function Vectorization (WFV), an approach that allows a compiler to automatically create code that exploits data-parallelism using SIMD instructions. Data-parallel applications such as particle simulations, stock option price estimation, or video decoding require the same computations to be performed on huge amounts of data. Without WFV, one processor core executes a single instance of a data-parallel function. WFV transforms the function to execute multiple instances at once using SIMD instructions. The author describes an advanced WFV algorithm that includes a variety of analyses and code generation techniques. He shows that this approach improves the performance of the generated code in a variety of use cases. Contents Introduction, Foundations & Terminology, Related Work SIMD Property Analyses Whole-Function Vectorization Dynamic Code Variants, Evaluation, Conclusion, Outlook Target Groups Computer science researchers and students working in data-parallel computing Software and compiler engineers in the fields high-performance computing and compiler construction About the Author Ralf Karrenberg received his PhD in computer science at Saarland University in 2015. His seminal research on compilation techniques for SIMD architectures found wide recognition in both academia and the CPU and GPU industry. Currently, he is working for NVIDIA in Berlin. Prior to that, he contributed to research and development for visual effects in blockbuster movies at Weta Digital, New Zealand.
650
0
$a
Vector processing (Computer science)
$3
692137
650
0
$a
Compilers (Computer programs)
$3
535138
650
0
$a
Parallel processing (Electronic computers)
$3
653284
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
891123
650
2 4
$a
Computer Graphics.
$3
892532
650
2 4
$a
Appl.Mathematics/Computational Methods of Engineering.
$3
890892
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-10113-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9273238
電子資源
11.線上閱覽_V
電子書
EB QA76.5 .K18 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入