語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematical models for suspension b...
~
Gazzola, Filippo.
FindBook
Google Book
Amazon
博客來
Mathematical models for suspension bridges = nonlinear structural instability /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mathematical models for suspension bridges/ by Filippo Gazzola.
其他題名:
nonlinear structural instability /
作者:
Gazzola, Filippo.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xxi, 259 p. :ill., digital ;24 cm.
內容註:
1 Book overview -- 2 Brief history of suspension bridges -- 3 One dimensional models -- 4 A fish-bone beam model -- 5 Models with interacting oscillators -- 6 Plate models -- 7 Conclusions.
Contained By:
Springer eBooks
標題:
Suspension bridges - Mathematical models. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-15434-3
ISBN:
9783319154343 (electronic bk.)
Mathematical models for suspension bridges = nonlinear structural instability /
Gazzola, Filippo.
Mathematical models for suspension bridges
nonlinear structural instability /[electronic resource] :by Filippo Gazzola. - Cham :Springer International Publishing :2015. - xxi, 259 p. :ill., digital ;24 cm. - MS&A,v.152037-5255 ;. - MS&A ;v.10..
1 Book overview -- 2 Brief history of suspension bridges -- 3 One dimensional models -- 4 A fish-bone beam model -- 5 Models with interacting oscillators -- 6 Plate models -- 7 Conclusions.
This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
ISBN: 9783319154343 (electronic bk.)
Standard No.: 10.1007/978-3-319-15434-3doiSubjects--Topical Terms:
2153484
Suspension bridges
--Mathematical models.
LC Class. No.: TG400
Dewey Class. No.: 624.23015118
Mathematical models for suspension bridges = nonlinear structural instability /
LDR
:02068nmm a2200325 a 4500
001
2006519
003
DE-He213
005
20160105133818.0
006
m d
007
cr nn 008maaau
008
160114s2015 gw s 0 eng d
020
$a
9783319154343 (electronic bk.)
020
$a
9783319154336 (paper)
024
7
$a
10.1007/978-3-319-15434-3
$2
doi
035
$a
978-3-319-15434-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TG400
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
624.23015118
$2
23
090
$a
TG400
$b
.G291 2015
100
1
$a
Gazzola, Filippo.
$3
1074061
245
1 0
$a
Mathematical models for suspension bridges
$h
[electronic resource] :
$b
nonlinear structural instability /
$c
by Filippo Gazzola.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xxi, 259 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
MS&A,
$x
2037-5255 ;
$v
v.15
505
0
$a
1 Book overview -- 2 Brief history of suspension bridges -- 3 One dimensional models -- 4 A fish-bone beam model -- 5 Models with interacting oscillators -- 6 Plate models -- 7 Conclusions.
520
$a
This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
650
0
$a
Suspension bridges
$x
Mathematical models.
$3
2153484
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Ordinary Differential Equations.
$3
891264
650
2 4
$a
Partial Differential Equations.
$3
890899
650
2 4
$a
Mathematical Modeling and Industrial Mathematics.
$3
891089
650
2 4
$a
Structural Mechanics.
$3
893894
650
2 4
$a
Appl.Mathematics/Computational Methods of Engineering.
$3
890892
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
MS&A ;
$v
v.10.
$3
2062952
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-15434-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9272972
電子資源
11.線上閱覽_V
電子書
EB TG400
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入