語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Topology with applications = topolog...
~
Naimpally, S. A.
FindBook
Google Book
Amazon
博客來
Topology with applications = topological spaces via near and far /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Topology with applications/ Somashekhar A. Naimpally, James F. Peters.
其他題名:
topological spaces via near and far /
作者:
Naimpally, S. A.
其他作者:
Peters, James F.
出版者:
New Jersey :World Scientific, : c2013.,
面頁冊數:
1 online resource (xv, 277 p.)
內容註:
1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems.
內容註:
8. Initial and final structures, embedding. 8.1. Initial structures. 8.2. Embedding. 8.3. Final structures. 8.4. Application: quotient topology in image analysis. 8.5. Problems -- 9. Grills, clusters, bunches and proximal Wallman compactification. 9.1. Grills, clusters and bunches. 9.2. Grills. 9.3. Clans. 9.4. Bunches. 9.5. Clusters. 9.6. Proximal Wallman compactification. 9.7. Examples of compactifications. 9.8. Application: grills in pattern recognition. 9.9. Problems -- 10. Extensions of continuous functions: Taimanov theorem. 10.1. Proximal continuity. 10.2. Generalised Taimanov theorem. 10.3. Comparison of compactifications. 10.4. Application: topological psychology. 10.5. Problems -- 11. Metrisation. 11.1. Structures induced by a metric. 11.2. Uniform metrisation. 11.3. Proximal metrisation. 11.4. Topological metrisation. 11.5. Application: admissible covers in Micropalaeontology. 11.6. Problems -- 12. Function space topologies. 12.1. Topologies and convergences on a set of functions. 12.2. Pointwise convergence. 12.3. Compact open topology. 12.4. Proximal convergence. 12.5. Uniform convergence. 12.6. Pointwise convergence and preservation of continuity. 12.7. Uniform convergence on compacta. 12.8. Graph topologies. 12.9. Inverse uniform convergence for partial functions. 12.10. Application: hit and miss topologies in population dynamics. 12.11. Problems -- 13. Hyperspace topologies. 13.1. Overview of hyperspace topologies. 13.2. Vietoris topology. 13.3. Proximal topology. 13.4. Hausdorff metric (uniform) topology. 13.5. Application: local near sets in Hawking chronologies. 13.6. Problems -- 14. Selected topics: uniformity and metrisation. 14.1. Entourage uniformity. 14.2. Covering uniformity. 14.3. Topological metrisation theorems. 14.4. Tietze's extension theorem. 14.5. Application: local patterns. 14.6. Problems.
標題:
Topology. -
電子資源:
http://www.worldscientific.com/worldscibooks/10.1142/8501#t=toc
ISBN:
9789814407663 (electronic bk.)
Topology with applications = topological spaces via near and far /
Naimpally, S. A.
Topology with applications
topological spaces via near and far /[electronic resource] :Somashekhar A. Naimpally, James F. Peters. - New Jersey :World Scientific,c2013. - 1 online resource (xv, 277 p.)
Includes bibliographical references and indexes.
1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems.
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications.
ISBN: 9789814407663 (electronic bk.)Subjects--Topical Terms:
522026
Topology.
LC Class. No.: QA611
Dewey Class. No.: 514
Topology with applications = topological spaces via near and far /
LDR
:06100cmm a2200301Ia 4500
001
2004679
003
OCoLC
005
20151207015710.0
006
m o d
007
cr cnu---unuuu
008
160111s2013 nju ob 001 0 eng d
020
$a
9789814407663 (electronic bk.)
020
$a
9814407666 (electronic bk.)
020
$z
9789814407656
020
$z
9814407658
035
$a
(OCoLC)840506973
035
$a
ocn840506973
040
$a
N
$b
eng
$c
N
$d
YDXCP
$d
CUS
$d
DEBSZ
$d
I9W
$d
GGVRL
$d
OCLCQ
$d
OCLCF
050
4
$a
QA611
082
0 4
$a
514
$2
23
100
1
$a
Naimpally, S. A.
$3
2012854
245
1 0
$a
Topology with applications
$h
[electronic resource] :
$b
topological spaces via near and far /
$c
Somashekhar A. Naimpally, James F. Peters.
260
$a
New Jersey :
$b
World Scientific,
$c
c2013.
300
$a
1 online resource (xv, 277 p.)
504
$a
Includes bibliographical references and indexes.
505
0
$a
1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems.
505
8
$a
8. Initial and final structures, embedding. 8.1. Initial structures. 8.2. Embedding. 8.3. Final structures. 8.4. Application: quotient topology in image analysis. 8.5. Problems -- 9. Grills, clusters, bunches and proximal Wallman compactification. 9.1. Grills, clusters and bunches. 9.2. Grills. 9.3. Clans. 9.4. Bunches. 9.5. Clusters. 9.6. Proximal Wallman compactification. 9.7. Examples of compactifications. 9.8. Application: grills in pattern recognition. 9.9. Problems -- 10. Extensions of continuous functions: Taimanov theorem. 10.1. Proximal continuity. 10.2. Generalised Taimanov theorem. 10.3. Comparison of compactifications. 10.4. Application: topological psychology. 10.5. Problems -- 11. Metrisation. 11.1. Structures induced by a metric. 11.2. Uniform metrisation. 11.3. Proximal metrisation. 11.4. Topological metrisation. 11.5. Application: admissible covers in Micropalaeontology. 11.6. Problems -- 12. Function space topologies. 12.1. Topologies and convergences on a set of functions. 12.2. Pointwise convergence. 12.3. Compact open topology. 12.4. Proximal convergence. 12.5. Uniform convergence. 12.6. Pointwise convergence and preservation of continuity. 12.7. Uniform convergence on compacta. 12.8. Graph topologies. 12.9. Inverse uniform convergence for partial functions. 12.10. Application: hit and miss topologies in population dynamics. 12.11. Problems -- 13. Hyperspace topologies. 13.1. Overview of hyperspace topologies. 13.2. Vietoris topology. 13.3. Proximal topology. 13.4. Hausdorff metric (uniform) topology. 13.5. Application: local near sets in Hawking chronologies. 13.6. Problems -- 14. Selected topics: uniformity and metrisation. 14.1. Entourage uniformity. 14.2. Covering uniformity. 14.3. Topological metrisation theorems. 14.4. Tietze's extension theorem. 14.5. Application: local patterns. 14.6. Problems.
520
$a
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications.
588
0
$a
Print version record.
650
0
$a
Topology.
$3
522026
700
1
$a
Peters, James F.
$3
653341
856
4 0
$u
http://www.worldscientific.com/worldscibooks/10.1142/8501#t=toc
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9271980
電子資源
11.線上閱覽_V
電子書
EB QA611
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入