Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Molecular imaging in nano MRI
~
Ting, Michael ((Software engineer))
Linked to FindBook
Google Book
Amazon
博客來
Molecular imaging in nano MRI
Record Type:
Electronic resources : Monograph/item
Title/Author:
Molecular imaging in nano MRI/ Michael Ting.
Author:
Ting, Michael
Published:
Hoboken :Wiley, : 2014.,
Description:
1 online resource (89 p.)
[NT 15003449]:
Cover; Title page; Contents; Introduction; Chapter 1. Nano MRI; Chapter 2. Sparse Image Reconstruction; 2.1. Introduction; 2.2. Problem formulation; 2.3. Validity of the observation model in MRFM; 2.4. Literature review; 2.4.1. Sparse denoising; 2.4.2. Variable selection; 2.4.3. Compressed sensing; 2.5. Reconstruction performance criteria; Chapter 3. Iterative Thresholding Methods; 3.1. Introduction; 3.2. Separation of deconvolution and denoising; 3.2.1. Gaussian noise statistics; 3.2.2. Poisson noise statistics.
[NT 15003449]:
3.3. Choice of sparse denoising operator in the case of Gaussian noise statistics3.3.1. Comparison to the projected gradient method; 3.4. Hyperparameter selection; 3.5. MAP estimators using the LAZE image prior; 3.5.1. MAP1; 3.5.2. MAP2; 3.5.3. Comparison of MAP1 versus MAP2; 3.6. Simulation example; 3.7. Future directions; Chapter 4. Hyperparameter Selection Using the SURE Criterion; 4.1. Introduction; 4.2. SURE for the lasso estimator; 4.3. SURE for the hybrid estimator; 4.4. Computational considerations; 4.5. Comparison with other criteria; 4.6. Simulation example.
[NT 15003449]:
Chapter 5. Monte Carlo Approach: Gibbs Sampling5.1. Introduction; 5.2. Casting the sparse image reconstruction problem in the Bayesian framework; 5.3. MAP estimate using the Gibbs sampler; 5.3.1. Conditional density of w; 5.3.2. Conditional density of a; 5.3.3. Conditional density of x; 5.3.4. Conditional density of σ2; 5.4. Uncertainty in the blur point spread function; 5.5. Simulation example; Chapter 6. Simulation Study; 6.1. Introduction; 6.2. Reconstruction simulation study; 6.2.1. Binary-valued x; 6.2.2. {0, ±1}-valued x; 6.3. Discussion; Bibliography; Index.
Subject:
Magnetic resonance imaging - Computer programs. -
Online resource:
http://onlinelibrary.wiley.com/book/10.1002/9781118760949
ISBN:
9781118760932 (electronic bk.)
Molecular imaging in nano MRI
Ting, Michael(Software engineer)
Molecular imaging in nano MRI
[electronic resource] /Michael Ting. - Hoboken :Wiley,2014. - 1 online resource (89 p.) - FOCUS Series. - Colección "FOCUS.".
Cover; Title page; Contents; Introduction; Chapter 1. Nano MRI; Chapter 2. Sparse Image Reconstruction; 2.1. Introduction; 2.2. Problem formulation; 2.3. Validity of the observation model in MRFM; 2.4. Literature review; 2.4.1. Sparse denoising; 2.4.2. Variable selection; 2.4.3. Compressed sensing; 2.5. Reconstruction performance criteria; Chapter 3. Iterative Thresholding Methods; 3.1. Introduction; 3.2. Separation of deconvolution and denoising; 3.2.1. Gaussian noise statistics; 3.2.2. Poisson noise statistics.
The authors describe a technique that can visualize the atomic structure of molecules, it is necessary, in terms of the image processing, to consider the reconstruction of sparse images. Many works have leveraged the assumption of sparsity in order to achieve an improved performance that would not otherwise be possible. For nano MRI, the assumption of sparsity is given by default since, at the atomic scale, molecules aresparse structures. This work reviews the latest results on molecular imaging for nano MRI. Sparse image reconstruction methods can be categorized as either non-B.
ISBN: 9781118760932 (electronic bk.)Subjects--Topical Terms:
2148174
Magnetic resonance imaging
--Computer programs.
LC Class. No.: T174.7
Dewey Class. No.: 620.5
Molecular imaging in nano MRI
LDR
:03267cmm a2200337Ia 4500
001
2003139
003
OCoLC
006
m o d
007
cr |||||||||||
008
151223s2014 nju o 000 0 eng d
020
$a
9781118760932 (electronic bk.)
020
$a
111876093X (electronic bk.)
020
$a
9781118760895 (electronic bk.)
020
$a
1118760891 (electronic bk.)
020
$a
9781118760949 (electronic bk.)
020
$a
1118760948 (electronic bk.)
020
$z
9781848214743
035
$a
(OCoLC)871224295
035
$a
ocn871224295
040
$a
EBLCP
$b
eng
$c
EBLCP
$d
OCLCQ
$d
IDEBK
$d
N
$d
DG1
050
4
$a
T174.7
082
0 4
$a
620.5
$2
22
100
1
$a
Ting, Michael
$c
(Software engineer)
$3
2148172
245
1 0
$a
Molecular imaging in nano MRI
$h
[electronic resource] /
$c
Michael Ting.
260
$a
Hoboken :
$b
Wiley,
$c
2014.
300
$a
1 online resource (89 p.)
490
1
$a
FOCUS Series
505
0
$a
Cover; Title page; Contents; Introduction; Chapter 1. Nano MRI; Chapter 2. Sparse Image Reconstruction; 2.1. Introduction; 2.2. Problem formulation; 2.3. Validity of the observation model in MRFM; 2.4. Literature review; 2.4.1. Sparse denoising; 2.4.2. Variable selection; 2.4.3. Compressed sensing; 2.5. Reconstruction performance criteria; Chapter 3. Iterative Thresholding Methods; 3.1. Introduction; 3.2. Separation of deconvolution and denoising; 3.2.1. Gaussian noise statistics; 3.2.2. Poisson noise statistics.
505
8
$a
3.3. Choice of sparse denoising operator in the case of Gaussian noise statistics3.3.1. Comparison to the projected gradient method; 3.4. Hyperparameter selection; 3.5. MAP estimators using the LAZE image prior; 3.5.1. MAP1; 3.5.2. MAP2; 3.5.3. Comparison of MAP1 versus MAP2; 3.6. Simulation example; 3.7. Future directions; Chapter 4. Hyperparameter Selection Using the SURE Criterion; 4.1. Introduction; 4.2. SURE for the lasso estimator; 4.3. SURE for the hybrid estimator; 4.4. Computational considerations; 4.5. Comparison with other criteria; 4.6. Simulation example.
505
8
$a
Chapter 5. Monte Carlo Approach: Gibbs Sampling5.1. Introduction; 5.2. Casting the sparse image reconstruction problem in the Bayesian framework; 5.3. MAP estimate using the Gibbs sampler; 5.3.1. Conditional density of w; 5.3.2. Conditional density of a; 5.3.3. Conditional density of x; 5.3.4. Conditional density of σ2; 5.4. Uncertainty in the blur point spread function; 5.5. Simulation example; Chapter 6. Simulation Study; 6.1. Introduction; 6.2. Reconstruction simulation study; 6.2.1. Binary-valued x; 6.2.2. {0, ±1}-valued x; 6.3. Discussion; Bibliography; Index.
520
$a
The authors describe a technique that can visualize the atomic structure of molecules, it is necessary, in terms of the image processing, to consider the reconstruction of sparse images. Many works have leveraged the assumption of sparsity in order to achieve an improved performance that would not otherwise be possible. For nano MRI, the assumption of sparsity is given by default since, at the atomic scale, molecules aresparse structures. This work reviews the latest results on molecular imaging for nano MRI. Sparse image reconstruction methods can be categorized as either non-B.
588
$a
Description based on print version record.
650
0
$a
Magnetic resonance imaging
$x
Computer programs.
$3
2148174
650
0
$a
Nanoscience.
$3
587832
650
0
$a
Nuclear magnetic resonance
$x
Computer programs.
$3
2148175
830
0
$a
Colección "FOCUS."
$3
2148173
856
4 0
$u
http://onlinelibrary.wiley.com/book/10.1002/9781118760949
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9271049
電子資源
11.線上閱覽_V
電子書
EB T174.7
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login