語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nanoscale microwave engineering = op...
~
Tripon-Canseliet, Charlotte.
FindBook
Google Book
Amazon
博客來
Nanoscale microwave engineering = optical control of nanodevices /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nanoscale microwave engineering/ Charlotte Tripon-Canseliet, Jean Chazelas.
其他題名:
optical control of nanodevices /
作者:
Tripon-Canseliet, Charlotte.
其他作者:
Chazelas, Jean.
出版者:
London :ISTE ; : 2014.,
面頁冊數:
1 online resource (xiii, 120 p.) :ill.
內容註:
Cover; Title Page; Contents; Introduction; Chapter 1. Nanotechnology-based Materials and Their Interaction with Light; 1.1. Review of main trends in 3D to 0D materials; 1.1.1. Main trends in 3D materials for radio frequency (RF) electronicsand photonics; 1.1.2. Main trends in 2D materials for RF electronics and photonics; 1.1.3. Review of other two-dimensional structures for RF electronic applications; 1.1.4. Main trends in 1D materials for RF electronics and photonics; 1.1.5. Other 1D materials for RF applications; 1.1.6. Some attempts on 0D materials; 1.2. Light/matter interactions 1.2.1. Fundamental electromagnetic properties of 3D bulk materials1.2.2. Linear optical transitions; 1.3. Focus on two light/matter interactions at the material level; 1.3.1. Photoconductivity in semiconductor material; 1.3.2. Example of light absorption in metals: plasmonics; Chapter 2. Electromagnetic Material Characterization at Nanoscale; 2.1. State of the art of macroscopic material characterization techniques in the microwave domain with dedicated equipment; 2.1.1. Static resistivity; 2.1.2. Carrier and doping density; 2.1.3. Contact resistance and Schottky barriers 2.1.4. Transient methods for the determination of carrier dynamics2.1.5. Frequency methods for complex permittivity determination infrequency; 2.2. Evolution of techniques for nanomaterial characterization; 2.2.1. The CNT transistor; 2.2.2. Optimizing DC measurements; 2.2.3. Pulsed I-V measurements; 2.2.4. Capacitance-voltage measurements; 2.3. Micro- to nano experimental techniques for the characterization of 2D, 1D and 0D materials; Chapter 3. Nanotechnology-based Components and Devices; 3.1. Photoconductive switches for microwave applications; 3.1.1. Major stakes; 3.1.2. Basic principles 3.1.3. State of the art of photoconductive switching3.1.4. Photoconductive switching at nanoscale -- examples; 3.2. 2D materials for microwave applications; 3.2.1. Graphene for RF applications; 3.2.2. Optoelectronic functions; 3.2.3. Other potential applications of graphene; 3.3. 1D materials for RF electronics and photonics; 3.3.1. Carbon nanotubes in microwave and RF circuits; 3.3.2. CNT microwave transistors; 3.3.3. RF absorbing and shielding materials based on CNT composites; 3.3.4. Interconnects; Chapter 4. Nanotechnology-based Subsystems; 4.1. Sampling and analog-to-digital converter 4.1.1. Basic principles of sampling and subsampling4.1.2. Optical sampling of microwave signals; 4.2. Photomixing principle; 4.3. Nanoantennas for microwave to THz applications; 4.3.1. Optical control of antennas in the microwave domain; 4.3.2. THz photoconducting antennas; 4.3.3. 2D material-based THz antennas; 4.3.4. 1D material-based antennas; 4.3.5. Challenges for future applications; Conclusions and Perspectives; C.1. Conclusions; C.2. Perspectives: beyond graphene structures for advanced microwave functions; C.2.1. van der Waals heterostructures C.2.2. Beyond graphene: heterogeneous integration of graphene with other 2D semiconductor materials
標題:
Microwave circuits. -
電子資源:
http://onlinelibrary.wiley.com/book/10.1002/9781118925386
ISBN:
9781118925386 (electronic bk.)
Nanoscale microwave engineering = optical control of nanodevices /
Tripon-Canseliet, Charlotte.
Nanoscale microwave engineering
optical control of nanodevices /[electronic resource] :Charlotte Tripon-Canseliet, Jean Chazelas. - 1st ed. - London :ISTE ;2014. - 1 online resource (xiii, 120 p.) :ill. - FOCUS nanoscience and technology series. - Focus series (ISTE-Wiley).
Includes bibliograhical references and index.
Cover; Title Page; Contents; Introduction; Chapter 1. Nanotechnology-based Materials and Their Interaction with Light; 1.1. Review of main trends in 3D to 0D materials; 1.1.1. Main trends in 3D materials for radio frequency (RF) electronicsand photonics; 1.1.2. Main trends in 2D materials for RF electronics and photonics; 1.1.3. Review of other two-dimensional structures for RF electronic applications; 1.1.4. Main trends in 1D materials for RF electronics and photonics; 1.1.5. Other 1D materials for RF applications; 1.1.6. Some attempts on 0D materials; 1.2. Light/matter interactions 1.2.1. Fundamental electromagnetic properties of 3D bulk materials1.2.2. Linear optical transitions; 1.3. Focus on two light/matter interactions at the material level; 1.3.1. Photoconductivity in semiconductor material; 1.3.2. Example of light absorption in metals: plasmonics; Chapter 2. Electromagnetic Material Characterization at Nanoscale; 2.1. State of the art of macroscopic material characterization techniques in the microwave domain with dedicated equipment; 2.1.1. Static resistivity; 2.1.2. Carrier and doping density; 2.1.3. Contact resistance and Schottky barriers 2.1.4. Transient methods for the determination of carrier dynamics2.1.5. Frequency methods for complex permittivity determination infrequency; 2.2. Evolution of techniques for nanomaterial characterization; 2.2.1. The CNT transistor; 2.2.2. Optimizing DC measurements; 2.2.3. Pulsed I-V measurements; 2.2.4. Capacitance-voltage measurements; 2.3. Micro- to nano experimental techniques for the characterization of 2D, 1D and 0D materials; Chapter 3. Nanotechnology-based Components and Devices; 3.1. Photoconductive switches for microwave applications; 3.1.1. Major stakes; 3.1.2. Basic principles 3.1.3. State of the art of photoconductive switching3.1.4. Photoconductive switching at nanoscale -- examples; 3.2. 2D materials for microwave applications; 3.2.1. Graphene for RF applications; 3.2.2. Optoelectronic functions; 3.2.3. Other potential applications of graphene; 3.3. 1D materials for RF electronics and photonics; 3.3.1. Carbon nanotubes in microwave and RF circuits; 3.3.2. CNT microwave transistors; 3.3.3. RF absorbing and shielding materials based on CNT composites; 3.3.4. Interconnects; Chapter 4. Nanotechnology-based Subsystems; 4.1. Sampling and analog-to-digital converter 4.1.1. Basic principles of sampling and subsampling4.1.2. Optical sampling of microwave signals; 4.2. Photomixing principle; 4.3. Nanoantennas for microwave to THz applications; 4.3.1. Optical control of antennas in the microwave domain; 4.3.2. THz photoconducting antennas; 4.3.3. 2D material-based THz antennas; 4.3.4. 1D material-based antennas; 4.3.5. Challenges for future applications; Conclusions and Perspectives; C.1. Conclusions; C.2. Perspectives: beyond graphene structures for advanced microwave functions; C.2.1. van der Waals heterostructures C.2.2. Beyond graphene: heterogeneous integration of graphene with other 2D semiconductor materials
This book targets new trends in microwave engineering by downscaling components and devices for industrial purposes such as miniaturization and function densification, in association with the new approach of activation by a confined optical remote control. It covers the fundamental groundwork of the structure, property, characterization methods and applications of 1D and 2D nanostructures, along with providing the necessary knowledge on atomic structure, how it relates to the material band-structure and how this in turn leads to the amazing properties of these structures.
ISBN: 9781118925386 (electronic bk.)Subjects--Topical Terms:
649408
Microwave circuits.
LC Class. No.: T174.7
Dewey Class. No.: 620.52
Nanoscale microwave engineering = optical control of nanodevices /
LDR
:04923cmm a2200361Ia 4500
001
2002847
003
OCoLC
005
20140507092710.0
006
m o d
007
cr |||||||||||
008
151223s2014 enka ob 001 0 eng d
020
$a
9781118925386 (electronic bk.)
020
$a
1118925386 (electronic bk.)
020
$a
9781118925393 (electronic bk.)
020
$a
1118925394 (electronic bk.)
020
$z
9781118925386 (print)
020
$z
9781848215870 (hardback)
020
$z
1848215878 (hardback)
035
$a
(OCoLC)874321901
$z
(OCoLC)878828543
035
$a
ocn874321901
040
$a
EBLCP
$b
eng
$c
EBLCP
$d
N
$d
DG1
$d
E7B
$d
CUS
$d
YDXCP
$d
OCLCO
050
4
$a
T174.7
050
4
$a
TK7876
082
0 4
$a
620.52
$a
621.381/33
$2
22
100
1
$a
Tripon-Canseliet, Charlotte.
$3
2147619
245
1 0
$a
Nanoscale microwave engineering
$h
[electronic resource] :
$b
optical control of nanodevices /
$c
Charlotte Tripon-Canseliet, Jean Chazelas.
250
$a
1st ed.
260
$a
London :
$b
ISTE ;
$a
Hoboken :
$b
Wiley,
$c
2014.
300
$a
1 online resource (xiii, 120 p.) :
$b
ill.
490
1
$a
FOCUS nanoscience and technology series
504
$a
Includes bibliograhical references and index.
505
0
$a
Cover; Title Page; Contents; Introduction; Chapter 1. Nanotechnology-based Materials and Their Interaction with Light; 1.1. Review of main trends in 3D to 0D materials; 1.1.1. Main trends in 3D materials for radio frequency (RF) electronicsand photonics; 1.1.2. Main trends in 2D materials for RF electronics and photonics; 1.1.3. Review of other two-dimensional structures for RF electronic applications; 1.1.4. Main trends in 1D materials for RF electronics and photonics; 1.1.5. Other 1D materials for RF applications; 1.1.6. Some attempts on 0D materials; 1.2. Light/matter interactions 1.2.1. Fundamental electromagnetic properties of 3D bulk materials1.2.2. Linear optical transitions; 1.3. Focus on two light/matter interactions at the material level; 1.3.1. Photoconductivity in semiconductor material; 1.3.2. Example of light absorption in metals: plasmonics; Chapter 2. Electromagnetic Material Characterization at Nanoscale; 2.1. State of the art of macroscopic material characterization techniques in the microwave domain with dedicated equipment; 2.1.1. Static resistivity; 2.1.2. Carrier and doping density; 2.1.3. Contact resistance and Schottky barriers 2.1.4. Transient methods for the determination of carrier dynamics2.1.5. Frequency methods for complex permittivity determination infrequency; 2.2. Evolution of techniques for nanomaterial characterization; 2.2.1. The CNT transistor; 2.2.2. Optimizing DC measurements; 2.2.3. Pulsed I-V measurements; 2.2.4. Capacitance-voltage measurements; 2.3. Micro- to nano experimental techniques for the characterization of 2D, 1D and 0D materials; Chapter 3. Nanotechnology-based Components and Devices; 3.1. Photoconductive switches for microwave applications; 3.1.1. Major stakes; 3.1.2. Basic principles 3.1.3. State of the art of photoconductive switching3.1.4. Photoconductive switching at nanoscale -- examples; 3.2. 2D materials for microwave applications; 3.2.1. Graphene for RF applications; 3.2.2. Optoelectronic functions; 3.2.3. Other potential applications of graphene; 3.3. 1D materials for RF electronics and photonics; 3.3.1. Carbon nanotubes in microwave and RF circuits; 3.3.2. CNT microwave transistors; 3.3.3. RF absorbing and shielding materials based on CNT composites; 3.3.4. Interconnects; Chapter 4. Nanotechnology-based Subsystems; 4.1. Sampling and analog-to-digital converter 4.1.1. Basic principles of sampling and subsampling4.1.2. Optical sampling of microwave signals; 4.2. Photomixing principle; 4.3. Nanoantennas for microwave to THz applications; 4.3.1. Optical control of antennas in the microwave domain; 4.3.2. THz photoconducting antennas; 4.3.3. 2D material-based THz antennas; 4.3.4. 1D material-based antennas; 4.3.5. Challenges for future applications; Conclusions and Perspectives; C.1. Conclusions; C.2. Perspectives: beyond graphene structures for advanced microwave functions; C.2.1. van der Waals heterostructures C.2.2. Beyond graphene: heterogeneous integration of graphene with other 2D semiconductor materials
520
$a
This book targets new trends in microwave engineering by downscaling components and devices for industrial purposes such as miniaturization and function densification, in association with the new approach of activation by a confined optical remote control. It covers the fundamental groundwork of the structure, property, characterization methods and applications of 1D and 2D nanostructures, along with providing the necessary knowledge on atomic structure, how it relates to the material band-structure and how this in turn leads to the amazing properties of these structures.
588
$a
Description based on online resource; title from PDF title page (Wiley, viewed May 2, 2014)
650
0
$a
Microwave circuits.
$3
649408
650
0
$a
Microwave devices.
$3
604712
650
0
$a
Nanotechnology.
$3
526235
700
1
$a
Chazelas, Jean.
$3
834622
830
0
$a
Focus series (ISTE-Wiley)
$3
2147580
856
4 0
$u
http://onlinelibrary.wiley.com/book/10.1002/9781118925386
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9270757
電子資源
11.線上閱覽_V
電子書
EB T174.7
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入