Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Multi-objective swarm intelligence =...
~
Dehuri, Satchidananda.
Linked to FindBook
Google Book
Amazon
博客來
Multi-objective swarm intelligence = theoretical advances and applications /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Multi-objective swarm intelligence/ edited by Satchidananda Dehuri, Alok Kumar Jagadev, Mrutyunjaya Panda.
Reminder of title:
theoretical advances and applications /
other author:
Dehuri, Satchidananda.
Published:
Berlin, Heidelberg :Springer Berlin Heidelberg : : 2015.,
Description:
xiv, 201 p. :ill., digital ;24 cm.
[NT 15003449]:
Introduction -- Behavior of Bacterial Colony -- E.coli Bacterial Colonies -- Optimization based on E.coli Bacterial Colony -- Classification of BFO Algorithm -- Multi-objective optimization based on BF -- An overview of BFO Applications -- Conclusion.
Contained By:
Springer eBooks
Subject:
Swarm intelligence. -
Online resource:
http://dx.doi.org/10.1007/978-3-662-46309-3
ISBN:
9783662463093 (electronic bk.)
Multi-objective swarm intelligence = theoretical advances and applications /
Multi-objective swarm intelligence
theoretical advances and applications /[electronic resource] :edited by Satchidananda Dehuri, Alok Kumar Jagadev, Mrutyunjaya Panda. - Berlin, Heidelberg :Springer Berlin Heidelberg :2015. - xiv, 201 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.5921860-949X ;. - Studies in computational intelligence ;v.379..
Introduction -- Behavior of Bacterial Colony -- E.coli Bacterial Colonies -- Optimization based on E.coli Bacterial Colony -- Classification of BFO Algorithm -- Multi-objective optimization based on BF -- An overview of BFO Applications -- Conclusion.
The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.
ISBN: 9783662463093 (electronic bk.)
Standard No.: 10.1007/978-3-662-46309-3doiSubjects--Topical Terms:
577800
Swarm intelligence.
LC Class. No.: Q337.3
Dewey Class. No.: 006.3824
Multi-objective swarm intelligence = theoretical advances and applications /
LDR
:02216nmm a2200325 a 4500
001
1997981
003
DE-He213
005
20151027143245.0
006
m d
007
cr nn 008maaau
008
151112s2015 gw s 0 eng d
020
$a
9783662463093 (electronic bk.)
020
$a
9783662463086 (paper)
024
7
$a
10.1007/978-3-662-46309-3
$2
doi
035
$a
978-3-662-46309-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q337.3
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3824
$2
23
090
$a
Q337.3
$b
.M961 2015
245
0 0
$a
Multi-objective swarm intelligence
$h
[electronic resource] :
$b
theoretical advances and applications /
$c
edited by Satchidananda Dehuri, Alok Kumar Jagadev, Mrutyunjaya Panda.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2015.
300
$a
xiv, 201 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.592
505
0
$a
Introduction -- Behavior of Bacterial Colony -- E.coli Bacterial Colonies -- Optimization based on E.coli Bacterial Colony -- Classification of BFO Algorithm -- Multi-objective optimization based on BF -- An overview of BFO Applications -- Conclusion.
520
$a
The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.
650
0
$a
Swarm intelligence.
$3
577800
650
0
$a
Mathematical optimization.
$3
517763
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
700
1
$a
Dehuri, Satchidananda.
$3
901251
700
1
$a
Jagadev, Alok Kumar.
$3
2139426
700
1
$a
Panda, Mrutyunjaya.
$3
2059368
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v.379.
$3
1565969
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-46309-3
950
$a
Engineering (Springer-11647)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9268692
電子資源
01.外借(書)_YB
電子書
EB Q337.3 .M961 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login