語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Grammar-based feature generation for...
~
De Silva, Anthony Mihirana.
FindBook
Google Book
Amazon
博客來
Grammar-based feature generation for time-series prediction
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Grammar-based feature generation for time-series prediction/ by Anthony Mihirana De Silva, Philip H. W. Leong.
作者:
De Silva, Anthony Mihirana.
其他作者:
Leong, Philip H. W.
出版者:
Singapore :Springer Singapore : : 2015.,
面頁冊數:
xi, 99 p. :ill., digital ;24 cm.
內容註:
Introduction -- Feature Selection -- Grammatical Evolution -- Grammar Based Feature Generation -- Application of Grammar Framework to Time-series Prediction -- Case Studies -- Conclusion.
Contained By:
Springer eBooks
標題:
Machine learning. -
電子資源:
http://dx.doi.org/10.1007/978-981-287-411-5
ISBN:
9789812874115 (electronic bk.)
Grammar-based feature generation for time-series prediction
De Silva, Anthony Mihirana.
Grammar-based feature generation for time-series prediction
[electronic resource] /by Anthony Mihirana De Silva, Philip H. W. Leong. - Singapore :Springer Singapore :2015. - xi, 99 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology, Computational intelligence,2191-530X. - SpringerBriefs in applied sciences and technology.Computational intelligence..
Introduction -- Feature Selection -- Grammatical Evolution -- Grammar Based Feature Generation -- Application of Grammar Framework to Time-series Prediction -- Case Studies -- Conclusion.
This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions.
ISBN: 9789812874115 (electronic bk.)
Standard No.: 10.1007/978-981-287-411-5doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.3
Grammar-based feature generation for time-series prediction
LDR
:02543nmm a2200325 a 4500
001
1995328
003
DE-He213
005
20150921152144.0
006
m d
007
cr nn 008maaau
008
151019s2015 si s 0 eng d
020
$a
9789812874115 (electronic bk.)
020
$a
9789812874108 (paper)
024
7
$a
10.1007/978-981-287-411-5
$2
doi
035
$a
978-981-287-411-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3
$2
23
090
$a
Q325.5
$b
.D457 2015
100
1
$a
De Silva, Anthony Mihirana.
$3
2134720
245
1 0
$a
Grammar-based feature generation for time-series prediction
$h
[electronic resource] /
$c
by Anthony Mihirana De Silva, Philip H. W. Leong.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2015.
300
$a
xi, 99 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology, Computational intelligence,
$x
2191-530X
505
0
$a
Introduction -- Feature Selection -- Grammatical Evolution -- Grammar Based Feature Generation -- Application of Grammar Framework to Time-series Prediction -- Case Studies -- Conclusion.
520
$a
This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Time-series analysis
$x
Data processing.
$3
700459
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Pattern Recognition.
$3
891045
650
2 4
$a
Quantitative Finance.
$3
891090
700
1
$a
Leong, Philip H. W.
$3
2134721
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in applied sciences and technology.
$p
Computational intelligence.
$3
2054423
856
4 0
$u
http://dx.doi.org/10.1007/978-981-287-411-5
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9268030
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入