語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feature selection for data and patte...
~
Stanczyk, Urszula.
FindBook
Google Book
Amazon
博客來
Feature selection for data and pattern recognition
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Feature selection for data and pattern recognition/ edited by Urszula Stanczyk, Lakhmi C. Jain.
其他作者:
Stanczyk, Urszula.
出版者:
Berlin, Heidelberg :Springer Berlin Heidelberg : : 2015.,
面頁冊數:
xviii, 355 p. :ill. (some col.), digital ;24 cm.
內容註:
Feature Selection for Data and Pattern Recogniton: an Introduction -- Part I Estimation of Feature Importance -- Part II Rough Set Approach to Attribute Reduction -- Part III Rule Discovery and Evaluation -- Part IV Data- and Domain-oriented Methodologies.
Contained By:
Springer eBooks
標題:
Pattern recognition systems. -
電子資源:
http://dx.doi.org/10.1007/978-3-662-45620-0
ISBN:
9783662456200 (electronic bk.)
Feature selection for data and pattern recognition
Feature selection for data and pattern recognition
[electronic resource] /edited by Urszula Stanczyk, Lakhmi C. Jain. - Berlin, Heidelberg :Springer Berlin Heidelberg :2015. - xviii, 355 p. :ill. (some col.), digital ;24 cm. - Studies in computational intelligence,v.5841860-949X ;. - Studies in computational intelligence ;v.379..
Feature Selection for Data and Pattern Recogniton: an Introduction -- Part I Estimation of Feature Importance -- Part II Rough Set Approach to Attribute Reduction -- Part III Rule Discovery and Evaluation -- Part IV Data- and Domain-oriented Methodologies.
This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.
ISBN: 9783662456200 (electronic bk.)
Standard No.: 10.1007/978-3-662-45620-0doiSubjects--Topical Terms:
527885
Pattern recognition systems.
LC Class. No.: TK7882.P3
Dewey Class. No.: 006.4
Feature selection for data and pattern recognition
LDR
:02055nmm a2200325 a 4500
001
1994574
003
DE-He213
005
20150807153533.0
006
m d
007
cr nn 008maaau
008
151019s2015 gw s 0 eng d
020
$a
9783662456200 (electronic bk.)
020
$a
9783662456194 (paper)
024
7
$a
10.1007/978-3-662-45620-0
$2
doi
035
$a
978-3-662-45620-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7882.P3
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.4
$2
23
090
$a
TK7882.P3
$b
F288 2015
245
0 0
$a
Feature selection for data and pattern recognition
$h
[electronic resource] /
$c
edited by Urszula Stanczyk, Lakhmi C. Jain.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2015.
300
$a
xviii, 355 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.584
505
0
$a
Feature Selection for Data and Pattern Recogniton: an Introduction -- Part I Estimation of Feature Importance -- Part II Rough Set Approach to Attribute Reduction -- Part III Rule Discovery and Evaluation -- Part IV Data- and Domain-oriented Methodologies.
520
$a
This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.
650
0
$a
Pattern recognition systems.
$3
527885
650
0
$a
Rough sets.
$3
577805
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
700
1
$a
Stanczyk, Urszula.
$3
2133481
700
1
$a
Jain, Lakhmi C.
$3
893365
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v.379.
$3
1565969
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-45620-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9267277
電子資源
11.線上閱覽_V
電子書
EB TK7882.P3
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入