語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advanced neural network clustering t...
~
Karaszi, Zoltan.
FindBook
Google Book
Amazon
博客來
Advanced neural network clustering techniques for liquid crystal texture classification.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Advanced neural network clustering techniques for liquid crystal texture classification./
作者:
Karaszi, Zoltan.
面頁冊數:
71 p.
附註:
Source: Masters Abstracts International, Volume: 52-06.
Contained By:
Masters Abstracts International52-06(E).
標題:
Chemistry, Physical. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1555292
ISBN:
9781303874253
Advanced neural network clustering techniques for liquid crystal texture classification.
Karaszi, Zoltan.
Advanced neural network clustering techniques for liquid crystal texture classification.
- 71 p.
Source: Masters Abstracts International, Volume: 52-06.
Thesis (M.C.Sc.)--Kent State University, 2013.
This Master Thesis presents a new method of analyzing and classifying liquid crystal textures, using feed-forward neural networks and different clustering techniques. Liquid crystal phases are generally identified by human experts by polarizing optical microscopy observations of textures, based on typical defects, the smoothness or sharpness of domains and the birefringence colors of the films. The thesis aims to establish a novel algorithmic technique for liquid crystal texture analysis and classification. Using image analyzing software, a characterization vector with 22 parameters is extracted for each texture. Advanced clustering algorithms are used to classify textures based on those characteristic parameters. Furthermore, a ranking of the measurements is proposed to refine the accuracy of classification. The proposed methodology will lead to a reliable and simple technique for the physical investigation of liquid crystal materials.
ISBN: 9781303874253Subjects--Topical Terms:
560527
Chemistry, Physical.
Advanced neural network clustering techniques for liquid crystal texture classification.
LDR
:01839nam a2200277 4500
001
1969088
005
20141222143557.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303874253
035
$a
(MiAaPQ)AAI1555292
035
$a
AAI1555292
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Karaszi, Zoltan.
$3
2106352
245
1 0
$a
Advanced neural network clustering techniques for liquid crystal texture classification.
300
$a
71 p.
500
$a
Source: Masters Abstracts International, Volume: 52-06.
500
$a
Advisers: Feodor F. Dragan; Antal I. Jakli.
502
$a
Thesis (M.C.Sc.)--Kent State University, 2013.
520
$a
This Master Thesis presents a new method of analyzing and classifying liquid crystal textures, using feed-forward neural networks and different clustering techniques. Liquid crystal phases are generally identified by human experts by polarizing optical microscopy observations of textures, based on typical defects, the smoothness or sharpness of domains and the birefringence colors of the films. The thesis aims to establish a novel algorithmic technique for liquid crystal texture analysis and classification. Using image analyzing software, a characterization vector with 22 parameters is extracted for each texture. Advanced clustering algorithms are used to classify textures based on those characteristic parameters. Furthermore, a ranking of the measurements is proposed to refine the accuracy of classification. The proposed methodology will lead to a reliable and simple technique for the physical investigation of liquid crystal materials.
590
$a
School code: 0101.
650
4
$a
Chemistry, Physical.
$3
560527
650
4
$a
Computer Science.
$3
626642
690
$a
0494
690
$a
0984
710
2
$a
Kent State University.
$b
Computer Science.
$3
2106353
773
0
$t
Masters Abstracts International
$g
52-06(E).
790
$a
0101
791
$a
M.C.Sc.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1555292
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9264095
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入